Properties

Label 16.4.23373022359...0864.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{42}\cdot 3^{12}$
Root discriminant $14.06$
Ramified primes $2, 3$
Class number $1$
Class group Trivial
Galois group $(C_2^2\times C_4):C_2$ (as 16T37)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 28, -52, 38, 52, -196, 320, -368, 320, -196, 52, 38, -52, 28, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 28*x^14 - 52*x^13 + 38*x^12 + 52*x^11 - 196*x^10 + 320*x^9 - 368*x^8 + 320*x^7 - 196*x^6 + 52*x^5 + 38*x^4 - 52*x^3 + 28*x^2 - 8*x + 1)
 
gp: K = bnfinit(x^16 - 8*x^15 + 28*x^14 - 52*x^13 + 38*x^12 + 52*x^11 - 196*x^10 + 320*x^9 - 368*x^8 + 320*x^7 - 196*x^6 + 52*x^5 + 38*x^4 - 52*x^3 + 28*x^2 - 8*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 28 x^{14} - 52 x^{13} + 38 x^{12} + 52 x^{11} - 196 x^{10} + 320 x^{9} - 368 x^{8} + 320 x^{7} - 196 x^{6} + 52 x^{5} + 38 x^{4} - 52 x^{3} + 28 x^{2} - 8 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2337302235907620864=2^{42}\cdot 3^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.06$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{325} a^{14} + \frac{1}{13} a^{13} + \frac{137}{325} a^{12} - \frac{106}{325} a^{11} - \frac{152}{325} a^{10} + \frac{82}{325} a^{9} - \frac{133}{325} a^{8} - \frac{56}{325} a^{7} + \frac{62}{325} a^{6} - \frac{113}{325} a^{5} + \frac{108}{325} a^{4} + \frac{24}{325} a^{3} - \frac{123}{325} a^{2} + \frac{31}{65} a - \frac{64}{325}$, $\frac{1}{1625} a^{15} + \frac{1}{1625} a^{14} - \frac{138}{1625} a^{13} - \frac{794}{1625} a^{12} - \frac{16}{125} a^{11} + \frac{96}{325} a^{10} - \frac{151}{1625} a^{9} - \frac{764}{1625} a^{8} - \frac{219}{1625} a^{7} + \frac{24}{1625} a^{6} + \frac{109}{325} a^{5} + \frac{357}{1625} a^{4} + \frac{601}{1625} a^{3} - \frac{36}{125} a^{2} - \frac{534}{1625} a + \frac{561}{1625}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1026.14642978 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2^2\times C_4):C_2$ (as 16T37):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $(C_2^2\times C_4):C_2$
Character table for $(C_2^2\times C_4):C_2$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), 4.2.6912.1, \(\Q(\sqrt{2}, \sqrt{3})\), 4.2.1728.1, 8.4.191102976.1, 8.4.84934656.1, 8.4.764411904.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed