Normalized defining polynomial
\( x^{16} - 8 x^{15} + 26 x^{14} - 42 x^{13} - 224 x^{12} + 1526 x^{11} - 4856 x^{10} + 10244 x^{9} - 10696 x^{8} - 1894 x^{7} + 28943 x^{6} - 53943 x^{5} - 55815 x^{4} + 187219 x^{3} - 236831 x^{2} + 136350 x + 919829 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23302078379314905029568288023161=23^{8}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{495925} a^{12} - \frac{6}{495925} a^{11} - \frac{45856}{495925} a^{10} + \frac{6193}{99185} a^{9} + \frac{26098}{495925} a^{8} + \frac{205677}{495925} a^{7} - \frac{109048}{495925} a^{6} - \frac{14831}{99185} a^{5} - \frac{28972}{99185} a^{4} + \frac{111911}{495925} a^{3} + \frac{3052}{495925} a^{2} - \frac{202149}{495925} a - \frac{142744}{495925}$, $\frac{1}{495925} a^{13} - \frac{45892}{495925} a^{11} - \frac{45801}{495925} a^{10} + \frac{13518}{495925} a^{9} - \frac{1379}{19837} a^{8} - \frac{65206}{495925} a^{7} + \frac{164222}{495925} a^{6} - \frac{7722}{19837} a^{5} + \frac{135416}{495925} a^{4} - \frac{19777}{495925} a^{3} + \frac{113718}{495925} a^{2} + \frac{231322}{495925} a + \frac{135386}{495925}$, $\frac{1}{271382558125} a^{14} - \frac{1}{38768936875} a^{13} - \frac{50293}{271382558125} a^{12} + \frac{301849}{271382558125} a^{11} + \frac{16030683791}{271382558125} a^{10} - \frac{25879674446}{271382558125} a^{9} + \frac{7343138156}{271382558125} a^{8} + \frac{125908814677}{271382558125} a^{7} - \frac{63722980191}{271382558125} a^{6} + \frac{65146926566}{271382558125} a^{5} + \frac{134395270101}{271382558125} a^{4} - \frac{70161101559}{271382558125} a^{3} + \frac{132468102239}{271382558125} a^{2} + \frac{4129638866}{271382558125} a - \frac{3362943908}{271382558125}$, $\frac{1}{67623377216145625} a^{15} + \frac{1501}{814739484531875} a^{14} + \frac{54439756702}{67623377216145625} a^{13} - \frac{19234935521}{67623377216145625} a^{12} + \frac{6708935856548076}{67623377216145625} a^{11} - \frac{3204751902735381}{67623377216145625} a^{10} + \frac{4750934273504516}{67623377216145625} a^{9} - \frac{6089882442785158}{67623377216145625} a^{8} - \frac{6834917520915136}{67623377216145625} a^{7} + \frac{23979611739491376}{67623377216145625} a^{6} + \frac{9988908288565666}{67623377216145625} a^{5} + \frac{12802161160945906}{67623377216145625} a^{4} - \frac{9600092425980946}{67623377216145625} a^{3} + \frac{245872641008997}{814739484531875} a^{2} - \frac{2993347290523468}{67623377216145625} a + \frac{5479564211240256}{13524675443229125}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5321142774.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.12901781.1, 4.2.560947.1, 4.2.19343.1, 8.4.4827222636186869.1 x2, 8.4.166455952971961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29 | Data not computed | ||||||