Normalized defining polynomial
\( x^{16} - x^{15} + 5 x^{14} - x^{13} + x^{11} - 19 x^{10} - 13 x^{9} - 20 x^{8} - 11 x^{7} + 17 x^{6} + \cdots - 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(232292068597265625\) \(\medspace = 3^{6}\cdot 5^{8}\cdot 13^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.17\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}5^{1/2}13^{1/2}\approx 13.96424004376894$ | ||
Ramified primes: | \(3\), \(5\), \(13\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{334930591}a^{15}+\frac{138555887}{334930591}a^{14}+\frac{143733157}{334930591}a^{13}+\frac{108488160}{334930591}a^{12}+\frac{144776765}{334930591}a^{11}-\frac{102678000}{334930591}a^{10}-\frac{66609302}{334930591}a^{9}-\frac{83071435}{334930591}a^{8}+\frac{15454558}{334930591}a^{7}-\frac{113367582}{334930591}a^{6}+\frac{11827202}{334930591}a^{5}-\frac{159074520}{334930591}a^{4}+\frac{43836859}{334930591}a^{3}-\frac{144952960}{334930591}a^{2}+\frac{3839262}{334930591}a-\frac{150689317}{334930591}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{10720645}{334930591}a^{15}+\frac{14297481}{334930591}a^{14}-\frac{4712116}{334930591}a^{13}+\frac{161216741}{334930591}a^{12}-\frac{210217311}{334930591}a^{11}+\frac{119805825}{334930591}a^{10}-\frac{220078193}{334930591}a^{9}-\frac{597459530}{334930591}a^{8}+\frac{35055212}{334930591}a^{7}-\frac{247789778}{334930591}a^{6}+\frac{225219829}{334930591}a^{5}+\frac{1044328259}{334930591}a^{4}+\frac{539700632}{334930591}a^{3}+\frac{294704776}{334930591}a^{2}+\frac{79566591}{334930591}a-\frac{211541388}{334930591}$, $\frac{19202939}{334930591}a^{15}+\frac{4512668}{334930591}a^{14}+\frac{17460304}{334930591}a^{13}+\frac{132471461}{334930591}a^{12}-\frac{213688269}{334930591}a^{11}-\frac{62885141}{334930591}a^{10}-\frac{129929625}{334930591}a^{9}-\frac{576729072}{334930591}a^{8}-\frac{19013181}{334930591}a^{7}+\frac{471714850}{334930591}a^{6}+\frac{604789578}{334930591}a^{5}+\frac{983489165}{334930591}a^{4}+\frac{403091706}{334930591}a^{3}-\frac{449179736}{334930591}a^{2}-\frac{477561084}{334930591}a-\frac{375589560}{334930591}$, $\frac{55836336}{334930591}a^{15}-\frac{142687484}{334930591}a^{14}+\frac{381641954}{334930591}a^{13}-\frac{444422111}{334930591}a^{12}+\frac{69429471}{334930591}a^{11}+\frac{365855588}{334930591}a^{10}-\frac{1375551068}{334930591}a^{9}+\frac{968091736}{334930591}a^{8}-\frac{334142415}{334930591}a^{7}+\frac{17532087}{334930591}a^{6}+\frac{1294300671}{334930591}a^{5}-\frac{128628780}{334930591}a^{4}+\frac{82751074}{334930591}a^{3}-\frac{236401548}{334930591}a^{2}+\frac{342768619}{334930591}a-\frac{254720881}{334930591}$, $\frac{15341678}{334930591}a^{15}-\frac{63538762}{334930591}a^{14}+\frac{160856421}{334930591}a^{13}-\frac{264159280}{334930591}a^{12}+\frac{171709072}{334930591}a^{11}+\frac{110380202}{334930591}a^{10}-\frac{445084022}{334930591}a^{9}+\frac{572686264}{334930591}a^{8}-\frac{187553531}{334930591}a^{7}-\frac{265110563}{334930591}a^{6}+\frac{142120115}{334930591}a^{5}-\frac{322106606}{334930591}a^{4}-\frac{273362050}{334930591}a^{3}+\frac{595996861}{334930591}a^{2}+\frac{497489558}{334930591}a+\frac{276378611}{334930591}$, $\frac{84789373}{334930591}a^{15}-\frac{157120433}{334930591}a^{14}+\frac{540937127}{334930591}a^{13}-\frac{544134168}{334930591}a^{12}+\frac{421425666}{334930591}a^{11}-\frac{330542686}{334930591}a^{10}-\frac{1230283148}{334930591}a^{9}+\frac{34062559}{334930591}a^{8}-\frac{1501138630}{334930591}a^{7}+\frac{759615103}{334930591}a^{6}+\frac{1005313563}{334930591}a^{5}+\frac{1927054315}{334930591}a^{4}+\frac{1861456860}{334930591}a^{3}+\frac{698801927}{334930591}a^{2}+\frac{533243869}{334930591}a-\frac{234240899}{334930591}$, $\frac{9768380}{334930591}a^{15}-\frac{20279216}{334930591}a^{14}+\frac{5994157}{334930591}a^{13}+\frac{24328291}{334930591}a^{12}-\frac{251819661}{334930591}a^{11}+\frac{163114604}{334930591}a^{10}-\frac{3363334}{334930591}a^{9}-\frac{159044590}{334930591}a^{8}+\frac{1055341655}{334930591}a^{7}+\frac{234731150}{334930591}a^{6}+\frac{305690856}{334930591}a^{5}+\frac{69349170}{334930591}a^{4}-\frac{1367278673}{334930591}a^{3}-\frac{1354240245}{334930591}a^{2}-\frac{1152652847}{334930591}a-\frac{36843468}{334930591}$, $\frac{12840730}{334930591}a^{15}+\frac{67012508}{334930591}a^{14}-\frac{44857391}{334930591}a^{13}+\frac{411528230}{334930591}a^{12}-\frac{264180052}{334930591}a^{11}+\frac{160212729}{334930591}a^{10}-\frac{482094942}{334930591}a^{9}-\frac{1208343611}{334930591}a^{8}-\frac{913134297}{334930591}a^{7}-\frac{1291119693}{334930591}a^{6}+\frac{655007375}{334930591}a^{5}+\frac{1535520280}{334930591}a^{4}+\frac{2871314740}{334930591}a^{3}+\frac{2257483453}{334930591}a^{2}+\frac{1162913152}{334930591}a+\frac{176843790}{334930591}$, $\frac{86695208}{334930591}a^{15}-\frac{135053644}{334930591}a^{14}+\frac{530163506}{334930591}a^{13}-\frac{368948461}{334930591}a^{12}+\frac{202524776}{334930591}a^{11}+\frac{230147338}{334930591}a^{10}-\frac{2176759498}{334930591}a^{9}+\frac{271313261}{334930591}a^{8}-\frac{2129626422}{334930591}a^{7}-\frac{780661223}{334930591}a^{6}+\frac{2211785297}{334930591}a^{5}+\frac{1597216176}{334930591}a^{4}+\frac{3599801858}{334930591}a^{3}+\frac{2394210129}{334930591}a^{2}+\frac{1309307835}{334930591}a+\frac{40922675}{334930591}$, $\frac{48105152}{334930591}a^{15}-\frac{58645394}{334930591}a^{14}+\frac{253904410}{334930591}a^{13}-\frac{142095394}{334930591}a^{12}+\frac{94157245}{334930591}a^{11}-\frac{136288604}{334930591}a^{10}-\frac{781771867}{334930591}a^{9}-\frac{283453591}{334930591}a^{8}-\frac{901298702}{334930591}a^{7}+\frac{192036688}{334930591}a^{6}+\frac{1080360049}{334930591}a^{5}+\frac{1278387636}{334930591}a^{4}+\frac{1505705826}{334930591}a^{3}+\frac{441983143}{334930591}a^{2}-\frac{149203169}{334930591}a-\frac{244156176}{334930591}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 167.322044256 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 167.322044256 \cdot 1}{2\cdot\sqrt{232292068597265625}}\cr\approx \mathstrut & 0.170885482243 \end{aligned}\]
Galois group
A solvable group of order 32 |
The 14 conjugacy class representatives for $D_8:C_2$ |
Character table for $D_8:C_2$ |
Intermediate fields
\(\Q(\sqrt{13}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{5}) \), 4.2.507.1, 4.2.12675.1, \(\Q(\sqrt{5}, \sqrt{13})\), 8.4.160655625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 32 |
Degree 16 siblings: | 16.0.3345005787800625.1, 16.0.12370583534765625.1 |
Minimal sibling: | 16.0.12370583534765625.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{8}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.4.0.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
3.4.2.2 | $x^{4} - 6 x^{3} + 12 x^{2} + 36 x + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(13\) | 13.8.4.1 | $x^{8} + 520 x^{7} + 101458 x^{6} + 8810644 x^{5} + 288610205 x^{4} + 142111548 x^{3} + 982314112 x^{2} + 3617879976 x + 920156436$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
13.8.4.1 | $x^{8} + 520 x^{7} + 101458 x^{6} + 8810644 x^{5} + 288610205 x^{4} + 142111548 x^{3} + 982314112 x^{2} + 3617879976 x + 920156436$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |