Normalized defining polynomial
\( x^{16} + 6 x^{14} - 6 x^{13} + 7 x^{12} - 54 x^{11} - 72 x^{10} - 72 x^{9} - 438 x^{8} - 276 x^{7} - 1416 x^{6} - 1344 x^{5} - 1196 x^{4} - 1896 x^{3} - 1032 x^{2} - 144 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(231260683111582301945856=2^{24}\cdot 3^{12}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{44} a^{12} + \frac{3}{22} a^{11} - \frac{5}{22} a^{10} + \frac{1}{11} a^{9} - \frac{9}{44} a^{8} + \frac{1}{11} a^{7} - \frac{1}{22} a^{6} - \frac{1}{22} a^{5} - \frac{3}{11} a^{4} - \frac{2}{11} a^{3} + \frac{2}{11} a^{2} + \frac{5}{11} a + \frac{5}{11}$, $\frac{1}{44} a^{13} - \frac{1}{22} a^{11} - \frac{1}{22} a^{10} - \frac{1}{4} a^{9} - \frac{2}{11} a^{8} - \frac{1}{11} a^{7} + \frac{5}{22} a^{6} + \frac{5}{11} a^{4} + \frac{3}{11} a^{3} + \frac{4}{11} a^{2} - \frac{3}{11} a + \frac{3}{11}$, $\frac{1}{88} a^{14} + \frac{5}{44} a^{11} - \frac{9}{88} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{22} a^{7} + \frac{9}{44} a^{6} + \frac{2}{11} a^{5} - \frac{3}{22} a^{4} + \frac{1}{22} a^{2} + \frac{1}{11} a + \frac{5}{11}$, $\frac{1}{579039082019219272} a^{15} - \frac{109735809999931}{26319958273600876} a^{14} + \frac{212050023634554}{72379885252402409} a^{13} - \frac{712089430662771}{72379885252402409} a^{12} + \frac{103461993416136371}{579039082019219272} a^{11} - \frac{10110212400497177}{72379885252402409} a^{10} - \frac{5546901148821933}{26319958273600876} a^{9} + \frac{17923774982550617}{289519541009609636} a^{8} + \frac{25018194987220095}{289519541009609636} a^{7} + \frac{23381251856241535}{144759770504804818} a^{6} + \frac{63089094820100533}{144759770504804818} a^{5} - \frac{51239962347633655}{144759770504804818} a^{4} - \frac{46996128866620459}{144759770504804818} a^{3} + \frac{13178130210968237}{72379885252402409} a^{2} - \frac{26730489379530938}{72379885252402409} a + \frac{12107435069252100}{72379885252402409}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 225898.327942 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 53 conjugacy class representatives for t16n860 are not computed |
| Character table for t16n860 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{11}) \), 4.4.4752.1 x2, 4.4.13068.1 x2, \(\Q(\sqrt{3}, \sqrt{11})\), 8.8.2732361984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.8.16.22 | $x^{8} + 4 x^{6} + 4 x^{4} + 16$ | $4$ | $2$ | $16$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |