Normalized defining polynomial
\( x^{16} - 8 x^{15} + 38 x^{14} - 126 x^{13} + 308 x^{12} - 574 x^{11} + 781 x^{10} - 693 x^{9} + 133 x^{8} + 744 x^{7} - 1399 x^{6} + 1411 x^{5} - 730 x^{4} + 14 x^{3} + 361 x^{2} - 261 x + 100 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2177548341958822306321=17^{4}\cdot 97^{4}\cdot 131^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 97, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{857} a^{14} - \frac{7}{857} a^{13} + \frac{24}{857} a^{12} - \frac{53}{857} a^{11} + \frac{87}{857} a^{10} - \frac{116}{857} a^{9} + \frac{56}{857} a^{8} + \frac{175}{857} a^{7} - \frac{84}{857} a^{6} + \frac{292}{857} a^{5} + \frac{338}{857} a^{4} - \frac{295}{857} a^{3} + \frac{37}{857} a^{2} + \frac{402}{857} a - \frac{353}{857}$, $\frac{1}{1449187} a^{15} + \frac{838}{1449187} a^{14} + \frac{467173}{1449187} a^{13} - \frac{156315}{1449187} a^{12} - \frac{372929}{1449187} a^{11} + \frac{197664}{1449187} a^{10} - \frac{181093}{1449187} a^{9} - \frac{524981}{1449187} a^{8} + \frac{267771}{1449187} a^{7} + \frac{170986}{1449187} a^{6} - \frac{12751}{76273} a^{5} - \frac{222029}{1449187} a^{4} - \frac{21276}{1449187} a^{3} - \frac{284566}{1449187} a^{2} - \frac{429392}{1449187} a + \frac{366747}{1449187}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58396.4179312 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2580480 |
| The 62 conjugacy class representatives for t16n1938 are not computed |
| Character table for t16n1938 is not computed |
Intermediate fields
| 8.8.46664208361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.3.2.2 | $x^{3} + 485$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 97.3.2.2 | $x^{3} + 485$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 97.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 97.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $131$ | 131.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 131.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |