Properties

Label 16.4.21566968200...0000.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{8}\cdot 5^{12}\cdot 431^{4}$
Root discriminant $21.55$
Ramified primes $2, 5, 431$
Class number $1$
Class group Trivial
Galois group 16T1496

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, -83, -176, 709, -663, -235, 487, -166, -48, 76, -45, 60, -55, 22, -1, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - x^14 + 22*x^13 - 55*x^12 + 60*x^11 - 45*x^10 + 76*x^9 - 48*x^8 - 166*x^7 + 487*x^6 - 235*x^5 - 663*x^4 + 709*x^3 - 176*x^2 - 83*x + 41)
 
gp: K = bnfinit(x^16 - 3*x^15 - x^14 + 22*x^13 - 55*x^12 + 60*x^11 - 45*x^10 + 76*x^9 - 48*x^8 - 166*x^7 + 487*x^6 - 235*x^5 - 663*x^4 + 709*x^3 - 176*x^2 - 83*x + 41, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} - x^{14} + 22 x^{13} - 55 x^{12} + 60 x^{11} - 45 x^{10} + 76 x^{9} - 48 x^{8} - 166 x^{7} + 487 x^{6} - 235 x^{5} - 663 x^{4} + 709 x^{3} - 176 x^{2} - 83 x + 41 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2156696820062500000000=2^{8}\cdot 5^{12}\cdot 431^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 431$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1442550515782231332031} a^{15} - \frac{706297584449976511818}{1442550515782231332031} a^{14} - \frac{555690108762284659062}{1442550515782231332031} a^{13} + \frac{189169272224663085979}{1442550515782231332031} a^{12} + \frac{687446167804164437923}{1442550515782231332031} a^{11} - \frac{447516778903868866533}{1442550515782231332031} a^{10} + \frac{559345661831206822401}{1442550515782231332031} a^{9} - \frac{325270671865252985931}{1442550515782231332031} a^{8} - \frac{476867173508961414571}{1442550515782231332031} a^{7} + \frac{109927071128706533790}{1442550515782231332031} a^{6} + \frac{566024809997477020923}{1442550515782231332031} a^{5} + \frac{542800139889432812102}{1442550515782231332031} a^{4} + \frac{505287544077581944498}{1442550515782231332031} a^{3} + \frac{594325116655789354684}{1442550515782231332031} a^{2} - \frac{249444492738629940487}{1442550515782231332031} a - \frac{295946681812842230039}{1442550515782231332031}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 17179.8402056 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1496:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2304
The 40 conjugacy class representatives for t16n1496
Character table for t16n1496 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.53875.1, 8.2.107750000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.12.8.2$x^{12} - 8 x^{3} + 16$$3$$4$$8$$C_3\times (C_3 : C_4)$$[\ ]_{3}^{12}$
5Data not computed
431Data not computed