Normalized defining polynomial
\( x^{16} - 6 x^{15} - 14 x^{14} + 186 x^{13} - 951 x^{12} + 4000 x^{11} - 13558 x^{10} + 41228 x^{9} - 90086 x^{8} + 238146 x^{7} - 586206 x^{6} + 599580 x^{5} - 2327335 x^{4} + 2146782 x^{3} - 2500620 x^{2} + 6390268 x - 3549766 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21367369203669531951904323534848=2^{24}\cdot 2777^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{39786282034330355832658126718537515374617218035103} a^{15} + \frac{11089940696369089922608805673627902759999875054166}{39786282034330355832658126718537515374617218035103} a^{14} - \frac{19043073135364903416694467874965564249793207324642}{39786282034330355832658126718537515374617218035103} a^{13} + \frac{12608172827118731766727063549552135960671835405039}{39786282034330355832658126718537515374617218035103} a^{12} - \frac{13915239528451747503894973438953433935134551790338}{39786282034330355832658126718537515374617218035103} a^{11} + \frac{9727288355262873526460816649654482969933205793132}{39786282034330355832658126718537515374617218035103} a^{10} - \frac{5843219994743928015655003149640318767855229091123}{39786282034330355832658126718537515374617218035103} a^{9} + \frac{16429752908495329945245322946865571598755996220138}{39786282034330355832658126718537515374617218035103} a^{8} + \frac{941296969914179823599328278723629815218216966549}{39786282034330355832658126718537515374617218035103} a^{7} - \frac{4703405328798964082778936915071038719681378647702}{39786282034330355832658126718537515374617218035103} a^{6} + \frac{9657275671759935731944017993169038940166051136337}{39786282034330355832658126718537515374617218035103} a^{5} - \frac{3704386823869930659871600626163408347318618290456}{39786282034330355832658126718537515374617218035103} a^{4} - \frac{18991343842003739633532497392116864904556751631698}{39786282034330355832658126718537515374617218035103} a^{3} + \frac{3851988622999570544243937984956580323826094388033}{39786282034330355832658126718537515374617218035103} a^{2} - \frac{15981705138321842110788323110128719122845582587037}{39786282034330355832658126718537515374617218035103} a - \frac{1027169057769432955358816417031632016220253626744}{39786282034330355832658126718537515374617218035103}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2096543856.81 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 41 conjugacy class representatives for t16n1691 |
| Character table for t16n1691 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.5482360686848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.18.63 | $x^{12} + 6 x^{11} + 8 x^{10} - 52 x^{9} - 10 x^{8} + 24 x^{7} + 8 x^{6} + 64 x^{5} + 28 x^{4} - 40 x^{3} - 16 x^{2} - 16 x + 40$ | $4$ | $3$ | $18$ | $D_4 \times C_3$ | $[2, 2]^{6}$ | |
| 2777 | Data not computed | ||||||