Normalized defining polynomial
\( x^{16} + 153 x^{14} + 7191 x^{12} + 137020 x^{10} + 662847 x^{8} - 12151940 x^{6} - 156546404 x^{4} - 297221744 x^{2} + 1913364977 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21113617530364765644381463052288=2^{16}\cdot 17^{15}\cdot 103^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{103} a^{10} + \frac{50}{103} a^{8} - \frac{19}{103} a^{6} + \frac{30}{103} a^{4} + \frac{42}{103} a^{2}$, $\frac{1}{103} a^{11} + \frac{50}{103} a^{9} - \frac{19}{103} a^{7} + \frac{30}{103} a^{5} + \frac{42}{103} a^{3}$, $\frac{1}{10609} a^{12} + \frac{50}{10609} a^{10} + \frac{2041}{10609} a^{8} + \frac{1060}{10609} a^{6} + \frac{1999}{10609} a^{4} + \frac{16}{103} a^{2}$, $\frac{1}{10609} a^{13} + \frac{50}{10609} a^{11} + \frac{2041}{10609} a^{9} + \frac{1060}{10609} a^{7} + \frac{1999}{10609} a^{5} + \frac{16}{103} a^{3}$, $\frac{1}{823284700811821667} a^{14} + \frac{18644113439423}{823284700811821667} a^{12} + \frac{2077706665617359}{823284700811821667} a^{10} - \frac{60159473551547743}{823284700811821667} a^{8} + \frac{181727192121843210}{823284700811821667} a^{6} - \frac{219178146662631}{7993055347687589} a^{4} + \frac{22265642539914}{77602479103763} a^{2} - \frac{72647247295}{753422127221}$, $\frac{1}{823284700811821667} a^{15} + \frac{18644113439423}{823284700811821667} a^{13} + \frac{2077706665617359}{823284700811821667} a^{11} - \frac{60159473551547743}{823284700811821667} a^{9} + \frac{181727192121843210}{823284700811821667} a^{7} - \frac{219178146662631}{7993055347687589} a^{5} + \frac{22265642539914}{77602479103763} a^{3} - \frac{72647247295}{753422127221} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 117340143.038 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| 17 | Data not computed | ||||||
| 103 | Data not computed | ||||||