Normalized defining polynomial
\( x^{16} - 2 x^{15} + 34 x^{14} + 82 x^{13} - 457 x^{12} + 7022 x^{11} - 28498 x^{10} + 128536 x^{9} - 325780 x^{8} + 775396 x^{7} - 1014698 x^{6} + 731524 x^{5} + 1033292 x^{4} - 3711478 x^{3} + 14964706 x^{2} - 11893530 x + 2573195 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(197180902109852473753600000000=2^{24}\cdot 5^{8}\cdot 11^{6}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{14} + \frac{2}{25} a^{13} - \frac{2}{25} a^{12} + \frac{11}{25} a^{11} - \frac{12}{25} a^{9} + \frac{4}{25} a^{8} + \frac{1}{5} a^{7} - \frac{11}{25} a^{6} + \frac{7}{25} a^{5} - \frac{11}{25} a^{4} - \frac{3}{25} a^{3} - \frac{11}{25} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{2129570181441663637974335838512519098507417569934525} a^{15} - \frac{11926774006311181412353960619291003285507511783547}{2129570181441663637974335838512519098507417569934525} a^{14} + \frac{32563043151685399902484094597201589950548671071404}{425914036288332727594867167702503819701483513986905} a^{13} - \frac{197665689081486287522471452445468268637033556969441}{2129570181441663637974335838512519098507417569934525} a^{12} - \frac{728669155970064206727802565173452485580300867122749}{2129570181441663637974335838512519098507417569934525} a^{11} - \frac{316512084409463223017063667994006177763416801276892}{2129570181441663637974335838512519098507417569934525} a^{10} + \frac{45479720260127442668002988846594462495836480701331}{304224311634523376853476548358931299786773938562075} a^{9} - \frac{846303973837002569969753612583668072347302747337011}{2129570181441663637974335838512519098507417569934525} a^{8} - \frac{847401667734896211576735282081946031612602330853041}{2129570181441663637974335838512519098507417569934525} a^{7} + \frac{566249627681895353256392897796521002438733887537981}{2129570181441663637974335838512519098507417569934525} a^{6} - \frac{82425471583486979208866517690828245369537107198467}{304224311634523376853476548358931299786773938562075} a^{5} - \frac{160156804399523099265306627255662916745249875260804}{2129570181441663637974335838512519098507417569934525} a^{4} - \frac{838142693101954435753941447943129914563810690090424}{2129570181441663637974335838512519098507417569934525} a^{3} + \frac{620834666669562405215377058406321081599386478464629}{2129570181441663637974335838512519098507417569934525} a^{2} - \frac{23409938418401037134531170495631083732822902623746}{60844862326904675370695309671786259957354787712415} a - \frac{208381850179572683913694431160218919067875642433634}{425914036288332727594867167702503819701483513986905}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110749388.664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 53 conjugacy class representatives for t16n868 are not computed |
| Character table for t16n868 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.4400.1, 4.2.475.1, 4.2.83600.1, 8.4.6988960000.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.8.6.1 | $x^{8} + 57 x^{4} + 1444$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |