Properties

Label 16.4.19360514410...8125.1
Degree $16$
Signature $[4, 6]$
Discriminant $5^{8}\cdot 29^{6}\cdot 941^{3}$
Root discriminant $28.54$
Ramified primes $5, 29, 941$
Class number $2$
Class group $[2]$
Galois group 16T1432

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-149, -1158, 2751, -3379, 4565, -3343, 2586, -1804, 870, -665, 209, -173, 78, -42, 19, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 19*x^14 - 42*x^13 + 78*x^12 - 173*x^11 + 209*x^10 - 665*x^9 + 870*x^8 - 1804*x^7 + 2586*x^6 - 3343*x^5 + 4565*x^4 - 3379*x^3 + 2751*x^2 - 1158*x - 149)
 
gp: K = bnfinit(x^16 - 5*x^15 + 19*x^14 - 42*x^13 + 78*x^12 - 173*x^11 + 209*x^10 - 665*x^9 + 870*x^8 - 1804*x^7 + 2586*x^6 - 3343*x^5 + 4565*x^4 - 3379*x^3 + 2751*x^2 - 1158*x - 149, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} + 19 x^{14} - 42 x^{13} + 78 x^{12} - 173 x^{11} + 209 x^{10} - 665 x^{9} + 870 x^{8} - 1804 x^{7} + 2586 x^{6} - 3343 x^{5} + 4565 x^{4} - 3379 x^{3} + 2751 x^{2} - 1158 x - 149 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(193605144103655992578125=5^{8}\cdot 29^{6}\cdot 941^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.54$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 941$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1970799741034556588044921009} a^{15} + \frac{898478214736330367494468532}{1970799741034556588044921009} a^{14} + \frac{587265091839172764099933167}{1970799741034556588044921009} a^{13} + \frac{931625291769549627498796483}{1970799741034556588044921009} a^{12} - \frac{620850980140730185561848065}{1970799741034556588044921009} a^{11} - \frac{560268416903903594899873144}{1970799741034556588044921009} a^{10} + \frac{255337066722537605239693828}{1970799741034556588044921009} a^{9} + \frac{153347814752425071666523715}{1970799741034556588044921009} a^{8} + \frac{676906127869571012659759866}{1970799741034556588044921009} a^{7} - \frac{57802482577540541709227312}{1970799741034556588044921009} a^{6} - \frac{908672125599360292084257216}{1970799741034556588044921009} a^{5} + \frac{677137921650325458999648450}{1970799741034556588044921009} a^{4} + \frac{918672034353362521497946482}{1970799741034556588044921009} a^{3} - \frac{7703264504908751971136403}{103726302159713504633943211} a^{2} - \frac{225623115215128994291174450}{1970799741034556588044921009} a - \frac{591463699126924515380704}{13226843899560782470100141}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 73657.1626726 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1432:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 119 conjugacy class representatives for t16n1432 are not computed
Character table for t16n1432 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.494613125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ $16$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.6.1$x^{8} - 203 x^{4} + 68121$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
941Data not computed