Normalized defining polynomial
\( x^{16} - 3 x^{15} - 8 x^{14} - 20 x^{13} - 37 x^{12} + 118 x^{11} - 586 x^{10} + 492 x^{9} - 2798 x^{8} + 4516 x^{7} - 2252 x^{6} + 10178 x^{5} + 1249 x^{4} - 24201 x^{3} + 6366 x^{2} - 40280 x + 74161 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(192300484323376406494140625=5^{12}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{328} a^{13} + \frac{9}{328} a^{12} - \frac{1}{41} a^{11} - \frac{7}{328} a^{10} - \frac{3}{41} a^{9} - \frac{13}{164} a^{8} + \frac{31}{328} a^{7} - \frac{33}{82} a^{6} - \frac{21}{82} a^{5} - \frac{57}{328} a^{4} + \frac{7}{41} a^{3} - \frac{81}{164} a^{2} - \frac{17}{41} a - \frac{117}{328}$, $\frac{1}{656} a^{14} - \frac{7}{656} a^{12} - \frac{17}{656} a^{11} - \frac{43}{656} a^{10} + \frac{27}{164} a^{9} - \frac{145}{656} a^{8} + \frac{81}{656} a^{7} + \frac{15}{82} a^{6} + \frac{289}{656} a^{5} + \frac{159}{656} a^{4} + \frac{9}{82} a^{3} - \frac{9}{82} a^{2} + \frac{3}{16} a - \frac{13}{656}$, $\frac{1}{62620590735501044739424983536} a^{15} - \frac{6792857027997753785401701}{62620590735501044739424983536} a^{14} + \frac{77511494940085370896936049}{62620590735501044739424983536} a^{13} - \frac{3591379916591649868830885893}{31310295367750522369712491768} a^{12} + \frac{708947799715016666582869497}{31310295367750522369712491768} a^{11} + \frac{9877154906939165348074007}{703602143095517356622752624} a^{10} + \frac{11365510160099227310641998539}{62620590735501044739424983536} a^{9} - \frac{5778676266330623254910953411}{31310295367750522369712491768} a^{8} + \frac{8379741440110955740742281383}{62620590735501044739424983536} a^{7} - \frac{423998097907066294334707291}{1527331481353684018034755696} a^{6} - \frac{9925644767269688408323537595}{31310295367750522369712491768} a^{5} - \frac{14931731192719033313164744431}{62620590735501044739424983536} a^{4} - \frac{639726811417203857738329428}{3913786920968815296214061471} a^{3} - \frac{17447785730149819670317894537}{62620590735501044739424983536} a^{2} - \frac{1082902347972011873707061599}{3913786920968815296214061471} a - \frac{261560138568543556140727959}{1527331481353684018034755696}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8464867.53427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.775.1, 4.4.120125.1, 4.2.3875.1, 8.4.14430015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $31$ | 31.8.6.2 | $x^{8} + 713 x^{4} + 138384$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 31.8.6.2 | $x^{8} + 713 x^{4} + 138384$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |