Normalized defining polynomial
\( x^{16} - 6 x^{15} + 19 x^{14} - 46 x^{13} + 145 x^{12} - 718 x^{11} + 2589 x^{10} - 6942 x^{9} + 12826 x^{8} - 16704 x^{7} + 15111 x^{6} - 8832 x^{5} + 1347 x^{4} + 2038 x^{3} - 1836 x^{2} + 1008 x + 137 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(190482731772980153578634809=17^{12}\cdot 83^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{28} a^{13} + \frac{1}{14} a^{12} + \frac{1}{14} a^{11} - \frac{3}{14} a^{10} - \frac{3}{14} a^{9} + \frac{1}{7} a^{8} - \frac{3}{28} a^{7} + \frac{3}{14} a^{6} + \frac{5}{28} a^{5} - \frac{5}{14} a^{4} - \frac{1}{28} a^{3} + \frac{1}{7} a^{2} + \frac{1}{28} a - \frac{5}{14}$, $\frac{1}{784} a^{14} - \frac{3}{784} a^{13} - \frac{29}{784} a^{12} - \frac{1}{49} a^{11} + \frac{13}{196} a^{10} + \frac{31}{392} a^{9} - \frac{37}{784} a^{8} - \frac{9}{112} a^{7} - \frac{2}{49} a^{6} - \frac{33}{112} a^{5} + \frac{27}{56} a^{4} - \frac{257}{784} a^{3} + \frac{169}{392} a^{2} - \frac{253}{784} a + \frac{295}{784}$, $\frac{1}{26085776341849507770032} a^{15} - \frac{354392729004907893}{2006598180142269828464} a^{14} + \frac{52895013134795399567}{3726539477407072538576} a^{13} + \frac{701468471129699725499}{13042888170924753885016} a^{12} + \frac{130934372102322146181}{6521444085462376942508} a^{11} - \frac{36721818461282210157}{1003299090071134914232} a^{10} - \frac{5149139340209328677497}{26085776341849507770032} a^{9} + \frac{3222229109713828953959}{26085776341849507770032} a^{8} - \frac{276273093629087160657}{13042888170924753885016} a^{7} + \frac{220865679590655076237}{2006598180142269828464} a^{6} + \frac{92284043179477422610}{232908717337942033661} a^{5} - \frac{10309890234753371769365}{26085776341849507770032} a^{4} - \frac{1746837596970209431837}{6521444085462376942508} a^{3} - \frac{8862403255306033665873}{26085776341849507770032} a^{2} - \frac{1172852550662438865311}{26085776341849507770032} a - \frac{2515516361324750064833}{13042888170924753885016}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8455107.16318 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.23987.1, 4.4.4913.1, 4.2.407779.1, 8.4.166283712841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $83$ | 83.4.2.2 | $x^{4} - 83 x^{2} + 13778$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 83.4.0.1 | $x^{4} - x + 22$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 83.8.4.1 | $x^{8} + 303116 x^{4} - 571787 x^{2} + 22969827364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |