Normalized defining polynomial
\( x^{16} - 2 x^{15} + 3 x^{14} - 7 x^{12} + 10 x^{11} + 4 x^{10} - 22 x^{9} + 17 x^{8} + 20 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(188981478400000000\) \(\medspace = 2^{16}\cdot 5^{8}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.02\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}5^{1/2}11^{1/2}13^{1/2}19^{1/2}\approx 329.66649814623264$ | ||
Ramified primes: | \(2\), \(5\), \(11\), \(13\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{79469}a^{15}-\frac{36354}{79469}a^{14}-\frac{28859}{79469}a^{13}+\frac{12099}{79469}a^{12}+\frac{38060}{79469}a^{11}-\frac{140}{6113}a^{10}-\frac{37033}{79469}a^{9}+\frac{18734}{79469}a^{8}+\frac{2383}{6113}a^{7}+\frac{6611}{79469}a^{6}-\frac{8852}{79469}a^{5}+\frac{17923}{79469}a^{4}+\frac{29463}{79469}a^{3}-\frac{35271}{79469}a^{2}+\frac{18536}{79469}a-\frac{3019}{79469}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{361862}{79469}a^{15}-\frac{1024923}{79469}a^{14}+\frac{1953088}{79469}a^{13}-\frac{1686128}{79469}a^{12}-\frac{1019891}{79469}a^{11}+\frac{333966}{6113}a^{10}-\frac{2203108}{79469}a^{9}-\frac{5861043}{79469}a^{8}+\frac{830395}{6113}a^{7}-\frac{2051819}{79469}a^{6}-\frac{10614818}{79469}a^{5}+\frac{8531781}{79469}a^{4}+\frac{2363136}{79469}a^{3}-\frac{4168776}{79469}a^{2}-\frac{27444}{79469}a+\frac{396310}{79469}$, $\frac{783210}{79469}a^{15}-\frac{2172931}{79469}a^{14}+\frac{4127447}{79469}a^{13}-\frac{3401875}{79469}a^{12}-\frac{2471777}{79469}a^{11}+\frac{733041}{6113}a^{10}-\frac{4629512}{79469}a^{9}-\frac{12817715}{79469}a^{8}+\frac{1783831}{6113}a^{7}-\frac{3736428}{79469}a^{6}-\frac{23542715}{79469}a^{5}+\frac{18743885}{79469}a^{4}+\frac{5309247}{79469}a^{3}-\frac{9678693}{79469}a^{2}+\frac{342578}{79469}a+\frac{963264}{79469}$, $\frac{540135}{79469}a^{15}-\frac{1503022}{79469}a^{14}+\frac{2869800}{79469}a^{13}-\frac{2423920}{79469}a^{12}-\frac{1569014}{79469}a^{11}+\frac{494063}{6113}a^{10}-\frac{3174101}{79469}a^{9}-\frac{8640270}{79469}a^{8}+\frac{1217138}{6113}a^{7}-\frac{2808976}{79469}a^{6}-\frac{15598559}{79469}a^{5}+\frac{12482127}{79469}a^{4}+\frac{3350077}{79469}a^{3}-\frac{6117328}{79469}a^{2}+\frac{119864}{79469}a+\frac{592598}{79469}$, $\frac{301199}{79469}a^{15}-\frac{867502}{79469}a^{14}+\frac{1686128}{79469}a^{13}-\frac{1513143}{79469}a^{12}-\frac{722938}{79469}a^{11}+\frac{280812}{6113}a^{10}-\frac{2099921}{79469}a^{9}-\frac{4643481}{79469}a^{8}+\frac{714543}{6113}a^{7}-\frac{2412214}{79469}a^{6}-\frac{8531781}{79469}a^{5}+\frac{7769000}{79469}a^{4}+\frac{1273880}{79469}a^{3}-\frac{3591176}{79469}a^{2}+\frac{327414}{79469}a+\frac{361862}{79469}$, $\frac{403891}{79469}a^{15}-\frac{1155664}{79469}a^{14}+\frac{2211931}{79469}a^{13}-\frac{1937795}{79469}a^{12}-\frac{1107121}{79469}a^{11}+\frac{379516}{6113}a^{10}-\frac{2660045}{79469}a^{9}-\frac{6424892}{79469}a^{8}+\frac{946257}{6113}a^{7}-\frac{2736945}{79469}a^{6}-\frac{11773703}{79469}a^{5}+\frac{10040808}{79469}a^{4}+\frac{2139198}{79469}a^{3}-\frac{4715192}{79469}a^{2}+\frac{305369}{79469}a+\frac{343283}{79469}$, $\frac{74792}{79469}a^{15}-\frac{274409}{79469}a^{14}+\frac{591464}{79469}a^{13}-\frac{720316}{79469}a^{12}+\frac{162878}{79469}a^{11}+\frac{74045}{6113}a^{10}-\frac{1151645}{79469}a^{9}-\frac{759301}{79469}a^{8}+\frac{237115}{6113}a^{7}-\frac{2310807}{79469}a^{6}-\frac{1512456}{79469}a^{5}+\frac{3192684}{79469}a^{4}-\frac{952833}{79469}a^{3}-\frac{889336}{79469}a^{2}+\frac{405152}{79469}a+\frac{53850}{79469}$, $\frac{460744}{79469}a^{15}-\frac{1318812}{79469}a^{14}+\frac{2526054}{79469}a^{13}-\frac{2195419}{79469}a^{12}-\frac{1302280}{79469}a^{11}+\frac{440352}{6113}a^{10}-\frac{3122322}{79469}a^{9}-\frac{7337956}{79469}a^{8}+\frac{1091249}{6113}a^{7}-\frac{3167477}{79469}a^{6}-\frac{13666538}{79469}a^{5}+\frac{11893396}{79469}a^{4}+\frac{2389962}{79469}a^{3}-\frac{5689706}{79469}a^{2}+\frac{532575}{79469}a+\frac{436585}{79469}$, $\frac{325859}{79469}a^{15}-\frac{946822}{79469}a^{14}+\frac{1827021}{79469}a^{13}-\frac{1637367}{79469}a^{12}-\frac{851166}{79469}a^{11}+\frac{312822}{6113}a^{10}-\frac{2393829}{79469}a^{9}-\frac{5093152}{79469}a^{8}+\frac{788410}{6113}a^{7}-\frac{2693749}{79469}a^{6}-\frac{9553855}{79469}a^{5}+\frac{8856168}{79469}a^{4}+\frac{1246393}{79469}a^{3}-\frac{4142114}{79469}a^{2}+\frac{637362}{79469}a+\frac{375775}{79469}$, $\frac{1212529}{79469}a^{15}-\frac{3434168}{79469}a^{14}+\frac{6567879}{79469}a^{13}-\frac{5628673}{79469}a^{12}-\frac{3483231}{79469}a^{11}+\frac{1140968}{6113}a^{10}-\frac{7733845}{79469}a^{9}-\frac{19529517}{79469}a^{8}+\frac{2824651}{6113}a^{7}-\frac{7399428}{79469}a^{6}-\frac{35905149}{79469}a^{5}+\frac{30047526}{79469}a^{4}+\frac{7240939}{79469}a^{3}-\frac{14775084}{79469}a^{2}+\frac{730185}{79469}a+\frac{1306469}{79469}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 145.296666367 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 145.296666367 \cdot 1}{2\cdot\sqrt{188981478400000000}}\cr\approx \mathstrut & 0.164518683734 \end{aligned}\]
Galois group
$C_2^7.C_2\wr D_4$ (as 16T1772):
A solvable group of order 16384 |
The 148 conjugacy class representatives for $C_2^7.C_2\wr D_4$ |
Character table for $C_2^7.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.400.1, 8.4.33440000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | R | R | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{5}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.8.2 | $x^{8} + 8 x^{7} + 56 x^{6} + 240 x^{5} + 816 x^{4} + 2048 x^{3} + 3776 x^{2} + 4928 x + 3760$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ |
2.8.8.2 | $x^{8} + 8 x^{7} + 56 x^{6} + 240 x^{5} + 816 x^{4} + 2048 x^{3} + 3776 x^{2} + 4928 x + 3760$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(11\) | 11.2.0.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
11.2.0.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
11.4.2.1 | $x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(13\) | 13.2.0.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
13.2.0.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.4.2.2 | $x^{4} - 156 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
13.4.0.1 | $x^{4} + 3 x^{2} + 12 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(19\) | 19.4.0.1 | $x^{4} + 2 x^{2} + 11 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
19.8.0.1 | $x^{8} + x^{4} + 12 x^{3} + 10 x^{2} + 3 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |