Properties

Label 16.4.18761708397...9984.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{44}\cdot 17^{4}\cdot 113^{2}$
Root discriminant $24.66$
Ramified primes $2, 17, 113$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1720

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, -32, -312, -608, -234, 296, 300, 16, -205, 4, 206, -128, 13, 8, 2, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 2*x^14 + 8*x^13 + 13*x^12 - 128*x^11 + 206*x^10 + 4*x^9 - 205*x^8 + 16*x^7 + 300*x^6 + 296*x^5 - 234*x^4 - 608*x^3 - 312*x^2 - 32*x + 4)
 
gp: K = bnfinit(x^16 - 4*x^15 + 2*x^14 + 8*x^13 + 13*x^12 - 128*x^11 + 206*x^10 + 4*x^9 - 205*x^8 + 16*x^7 + 300*x^6 + 296*x^5 - 234*x^4 - 608*x^3 - 312*x^2 - 32*x + 4, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 2 x^{14} + 8 x^{13} + 13 x^{12} - 128 x^{11} + 206 x^{10} + 4 x^{9} - 205 x^{8} + 16 x^{7} + 300 x^{6} + 296 x^{5} - 234 x^{4} - 608 x^{3} - 312 x^{2} - 32 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(18761708397791474089984=2^{44}\cdot 17^{4}\cdot 113^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.66$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 113$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7}$, $\frac{1}{52} a^{14} + \frac{5}{52} a^{13} + \frac{1}{26} a^{12} + \frac{9}{52} a^{11} + \frac{1}{13} a^{10} - \frac{3}{52} a^{9} - \frac{1}{52} a^{8} + \frac{11}{26} a^{6} - \frac{5}{13} a^{5} - \frac{3}{13} a^{4} - \frac{1}{13} a^{3} - \frac{4}{13} a^{2} - \frac{2}{13}$, $\frac{1}{104024386014796} a^{15} + \frac{351673747751}{104024386014796} a^{14} - \frac{4522597289947}{52012193007398} a^{13} - \frac{14040544167051}{104024386014796} a^{12} + \frac{4296045973991}{26006096503699} a^{11} + \frac{17711290052567}{104024386014796} a^{10} - \frac{18828943624311}{104024386014796} a^{9} + \frac{5720792865659}{26006096503699} a^{8} + \frac{13001792111112}{26006096503699} a^{7} + \frac{10401280551647}{52012193007398} a^{6} - \frac{1410476845965}{52012193007398} a^{5} + \frac{6090516831475}{26006096503699} a^{4} - \frac{19807301604}{64531256833} a^{3} + \frac{6849843959039}{26006096503699} a^{2} + \frac{12089293634949}{26006096503699} a + \frac{2708795070626}{26006096503699}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 105429.747525 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1720:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8192
The 116 conjugacy class representatives for t16n1720 are not computed
Character table for t16n1720 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.4.473956352.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.22.2$x^{8} + 10 x^{4} + 16 x + 4$$4$$2$$22$$C_4\times C_2$$[3, 4]^{2}$
2.8.22.2$x^{8} + 10 x^{4} + 16 x + 4$$4$$2$$22$$C_4\times C_2$$[3, 4]^{2}$
$17$$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.4.2.2$x^{4} - 17 x^{2} + 867$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$113$$\Q_{113}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{113}$$x + 3$$1$$1$$0$Trivial$[\ ]$
113.2.0.1$x^{2} - x + 10$$1$$2$$0$$C_2$$[\ ]^{2}$
113.2.0.1$x^{2} - x + 10$$1$$2$$0$$C_2$$[\ ]^{2}$
113.2.0.1$x^{2} - x + 10$$1$$2$$0$$C_2$$[\ ]^{2}$
113.4.0.1$x^{4} - x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
113.4.2.1$x^{4} + 2147 x^{2} + 1276900$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$