Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} - 11 x^{13} - 8 x^{12} + 24 x^{11} - 22 x^{10} + 187 x^{9} - 125 x^{8} + 86 x^{7} - 211 x^{6} + 44 x^{5} + 668 x^{4} + 384 x^{3} + 315 x^{2} - 162 x + 81 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18301625875548095703125=5^{13}\cdot 61\cdot 181^{4}\cdot 229\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 181, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{33} a^{13} + \frac{1}{33} a^{12} - \frac{1}{33} a^{11} + \frac{7}{33} a^{10} + \frac{13}{33} a^{9} - \frac{2}{11} a^{8} + \frac{5}{33} a^{7} - \frac{5}{33} a^{6} - \frac{2}{33} a^{5} + \frac{14}{33} a^{4} + \frac{5}{33} a^{3} - \frac{13}{33} a^{2} - \frac{13}{33} a - \frac{1}{11}$, $\frac{1}{99} a^{14} + \frac{1}{99} a^{13} - \frac{1}{99} a^{12} - \frac{26}{99} a^{11} - \frac{20}{99} a^{10} - \frac{13}{33} a^{9} + \frac{5}{99} a^{8} - \frac{5}{99} a^{7} - \frac{35}{99} a^{6} - \frac{19}{99} a^{5} + \frac{5}{99} a^{4} - \frac{13}{99} a^{3} - \frac{13}{99} a^{2} - \frac{1}{33} a$, $\frac{1}{692535440626262739} a^{15} + \frac{927282373837015}{692535440626262739} a^{14} + \frac{10219392589114673}{692535440626262739} a^{13} + \frac{540128685344594}{62957767329660249} a^{12} - \frac{329807192538864863}{692535440626262739} a^{11} + \frac{43414445561328976}{230845146875420913} a^{10} - \frac{319229625747216379}{692535440626262739} a^{9} + \frac{257253227966668303}{692535440626262739} a^{8} - \frac{154219192465338290}{692535440626262739} a^{7} - \frac{263429556171704611}{692535440626262739} a^{6} - \frac{3803630811040396}{692535440626262739} a^{5} + \frac{334472788603291412}{692535440626262739} a^{4} + \frac{177286867247152760}{692535440626262739} a^{3} + \frac{14845304021117344}{76948382291806971} a^{2} - \frac{12460642211006548}{76948382291806971} a - \frac{4026699273581297}{25649460763935657}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 97152.8492458 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16384 |
| The 136 conjugacy class representatives for t16n1776 are not computed |
| Character table for t16n1776 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.4525.1, 8.4.102378125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $181$ | 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.4.0.1 | $x^{4} - x + 54$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 181.4.2.1 | $x^{4} + 6335 x^{2} + 10614564$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 181.4.2.1 | $x^{4} + 6335 x^{2} + 10614564$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 229 | Data not computed | ||||||