Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 229 x^{12} - 646 x^{11} + 909 x^{10} + 328 x^{9} - 2178 x^{8} + 1354 x^{7} - 6237 x^{6} + 20672 x^{5} - 13540 x^{4} - 9104 x^{3} + 11280 x^{2} - 3008 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1814980849112797822933640641=17^{14}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{3}{16} a^{4} - \frac{3}{16} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{3}{16} a^{5} + \frac{1}{8} a^{4} - \frac{1}{16} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{1888} a^{12} - \frac{3}{944} a^{11} - \frac{19}{1888} a^{10} + \frac{75}{944} a^{9} - \frac{117}{944} a^{8} - \frac{15}{944} a^{7} + \frac{271}{1888} a^{6} - \frac{3}{472} a^{5} - \frac{415}{1888} a^{4} + \frac{241}{944} a^{3} + \frac{181}{472} a^{2} - \frac{57}{118} a + \frac{5}{59}$, $\frac{1}{103840} a^{13} + \frac{21}{103840} a^{12} + \frac{1589}{103840} a^{11} - \frac{33}{9440} a^{10} + \frac{3383}{51920} a^{9} - \frac{309}{3245} a^{8} + \frac{4889}{103840} a^{7} - \frac{14643}{103840} a^{6} - \frac{9589}{103840} a^{5} - \frac{16623}{103840} a^{4} + \frac{34}{295} a^{3} + \frac{3539}{12980} a^{2} + \frac{3727}{12980} a + \frac{1256}{3245}$, $\frac{1}{148491200} a^{14} - \frac{7}{148491200} a^{13} - \frac{1029}{13499200} a^{12} + \frac{13601}{29698240} a^{11} + \frac{215907}{14849120} a^{10} - \frac{713681}{9280700} a^{9} - \frac{15915967}{148491200} a^{8} - \frac{239471}{2284480} a^{7} - \frac{4580309}{29698240} a^{6} + \frac{230969}{148491200} a^{5} + \frac{836689}{18561400} a^{4} + \frac{33959}{314600} a^{3} - \frac{1781493}{3712280} a^{2} - \frac{571849}{2320175} a + \frac{665516}{2320175}$, $\frac{1}{8167016000} a^{15} + \frac{1}{408350800} a^{14} - \frac{2877}{2041754000} a^{13} - \frac{29701}{1020877000} a^{12} + \frac{41634121}{1633403200} a^{11} - \frac{2509623}{371228000} a^{10} - \frac{55085859}{8167016000} a^{9} - \frac{185569781}{2041754000} a^{8} - \frac{11462059}{163340320} a^{7} + \frac{22526057}{371228000} a^{6} - \frac{962539}{5939648} a^{5} + \frac{394894443}{2041754000} a^{4} + \frac{36043613}{157058000} a^{3} + \frac{101723207}{255219250} a^{2} - \frac{56777453}{510438500} a + \frac{52771557}{127609625}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32034366.963 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.230911.1, 4.4.4913.1, 4.2.13583.1, 8.2.42602592046879.2, 8.2.42602592046879.1, 8.4.53319889921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |