Normalized defining polynomial
\( x^{16} - 6 x^{15} + 36 x^{14} - 148 x^{13} + 497 x^{12} - 772 x^{11} - 315 x^{10} + 7670 x^{9} - 26334 x^{8} + 58350 x^{7} - 93825 x^{6} + 115850 x^{5} - 114924 x^{4} + 88560 x^{3} - 51824 x^{2} + 17184 x - 832 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1814980849112797822933640641=17^{14}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{68} a^{8} + \frac{7}{34} a^{7} - \frac{3}{17} a^{6} - \frac{2}{17} a^{5} + \frac{2}{17} a^{4} - \frac{4}{17} a^{3} + \frac{3}{68} a^{2} + \frac{5}{34} a + \frac{4}{17}$, $\frac{1}{68} a^{9} - \frac{1}{17} a^{7} - \frac{5}{34} a^{6} - \frac{4}{17} a^{5} + \frac{2}{17} a^{4} - \frac{11}{68} a^{3} - \frac{8}{17} a^{2} + \frac{3}{17} a - \frac{5}{17}$, $\frac{1}{272} a^{10} - \frac{1}{272} a^{9} - \frac{1}{136} a^{8} + \frac{11}{136} a^{7} + \frac{1}{68} a^{6} + \frac{21}{136} a^{5} - \frac{3}{272} a^{4} - \frac{19}{272} a^{3} - \frac{13}{68} a^{2} + \frac{7}{34} a + \frac{15}{34}$, $\frac{1}{544} a^{11} + \frac{1}{544} a^{9} - \frac{67}{272} a^{7} + \frac{55}{272} a^{6} + \frac{135}{544} a^{5} + \frac{61}{272} a^{4} - \frac{203}{544} a^{3} + \frac{11}{68} a^{2} - \frac{7}{34} a + \frac{33}{68}$, $\frac{1}{2176} a^{12} - \frac{1}{1088} a^{11} + \frac{1}{2176} a^{10} - \frac{5}{1088} a^{9} - \frac{3}{1088} a^{8} - \frac{123}{1088} a^{7} - \frac{453}{2176} a^{6} + \frac{79}{544} a^{5} + \frac{241}{2176} a^{4} + \frac{355}{1088} a^{3} - \frac{63}{136} a^{2} - \frac{131}{272} a - \frac{65}{136}$, $\frac{1}{4352} a^{13} - \frac{1}{4352} a^{12} + \frac{3}{4352} a^{11} + \frac{7}{4352} a^{10} + \frac{1}{1088} a^{9} - \frac{7}{1088} a^{8} - \frac{691}{4352} a^{7} - \frac{849}{4352} a^{6} + \frac{297}{4352} a^{5} + \frac{431}{4352} a^{4} - \frac{755}{2176} a^{3} - \frac{213}{544} a^{2} - \frac{109}{544} a - \frac{71}{272}$, $\frac{1}{4352} a^{14} - \frac{1}{2176} a^{11} - \frac{7}{4352} a^{10} - \frac{1}{1088} a^{9} + \frac{29}{4352} a^{8} - \frac{35}{544} a^{7} + \frac{481}{2176} a^{6} + \frac{21}{272} a^{5} - \frac{9}{4352} a^{4} - \frac{733}{2176} a^{3} + \frac{61}{272} a^{2} - \frac{5}{32} a + \frac{107}{272}$, $\frac{1}{69578014797824} a^{15} + \frac{24049365}{1087156481216} a^{14} - \frac{38321835}{17394503699456} a^{13} + \frac{3827393613}{17394503699456} a^{12} + \frac{53242793177}{69578014797824} a^{11} - \frac{37938160655}{34789007398912} a^{10} + \frac{290965364465}{69578014797824} a^{9} - \frac{19451603721}{17394503699456} a^{8} - \frac{122492301507}{34789007398912} a^{7} + \frac{112844743713}{2676077492224} a^{6} + \frac{3543043549483}{69578014797824} a^{5} + \frac{2531048999623}{17394503699456} a^{4} - \frac{1097561562289}{17394503699456} a^{3} - \frac{277290823665}{669019373056} a^{2} - \frac{40732667691}{2174312962432} a + \frac{3429710099}{167254843264}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18901226.1171 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 4.2.230911.1, 4.2.13583.1, 8.4.53319889921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 47 | Data not computed | ||||||