Normalized defining polynomial
\( x^{16} - 7 x^{12} - 100 x^{8} + 331 x^{4} + 19 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(176270963105382400000000=2^{20}\cdot 5^{8}\cdot 19^{3}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{2} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{2} - \frac{1}{6}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{3} a^{5} - \frac{1}{2} a^{3} - \frac{1}{6} a$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{6} - \frac{1}{2} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{5982} a^{12} - \frac{184}{2991} a^{8} - \frac{425}{2991} a^{4} + \frac{35}{1994}$, $\frac{1}{5982} a^{13} - \frac{184}{2991} a^{9} - \frac{425}{2991} a^{5} + \frac{35}{1994} a$, $\frac{1}{11964} a^{14} - \frac{1}{11964} a^{13} - \frac{1}{12} a^{11} - \frac{92}{2991} a^{10} - \frac{629}{11964} a^{9} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{2141}{11964} a^{6} + \frac{1945}{3988} a^{5} - \frac{1}{3} a^{4} - \frac{5}{12} a^{3} - \frac{481}{1994} a^{2} + \frac{3883}{11964} a + \frac{1}{12}$, $\frac{1}{11964} a^{15} - \frac{1}{11964} a^{13} - \frac{1}{11964} a^{12} + \frac{629}{11964} a^{11} - \frac{1}{12} a^{10} + \frac{92}{2991} a^{9} - \frac{629}{11964} a^{8} + \frac{49}{3988} a^{7} + \frac{1}{6} a^{6} + \frac{3841}{11964} a^{5} + \frac{1945}{3988} a^{4} + \frac{2099}{11964} a^{3} - \frac{5}{12} a^{2} - \frac{258}{997} a + \frac{3883}{11964}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 542854.955237 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 106 conjugacy class representatives for t16n1567 are not computed |
| Character table for t16n1567 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2225.1, 8.4.1504990000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.8.16.49 | $x^{8} + 14 x^{4} + 12 x^{2} + 8 x + 4$ | $4$ | $2$ | $16$ | $Z_8 : Z_8^\times$ | $[2, 2, 3, 3]^{2}$ | |
| 5 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.8.0.1 | $x^{8} - x + 62$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 89.8.4.1 | $x^{8} + 427734 x^{4} - 704969 x^{2} + 45739093689$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |