Properties

Label 16.4.17415183620...4081.2
Degree $16$
Signature $[4, 6]$
Discriminant $3^{8}\cdot 61^{12}$
Root discriminant $37.81$
Ramified primes $3, 61$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $D_4:C_4$ (as 16T26)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 0, 5213, 0, -9317, 0, 3298, 0, 1331, 0, -1034, 0, 70, 0, 8, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 8*x^14 + 70*x^12 - 1034*x^10 + 1331*x^8 + 3298*x^6 - 9317*x^4 + 5213*x^2 + 25)
 
gp: K = bnfinit(x^16 + 8*x^14 + 70*x^12 - 1034*x^10 + 1331*x^8 + 3298*x^6 - 9317*x^4 + 5213*x^2 + 25, 1)
 

Normalized defining polynomial

\( x^{16} + 8 x^{14} + 70 x^{12} - 1034 x^{10} + 1331 x^{8} + 3298 x^{6} - 9317 x^{4} + 5213 x^{2} + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(17415183620366462784744081=3^{8}\cdot 61^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2}$, $\frac{1}{30} a^{11} + \frac{1}{30} a^{9} + \frac{7}{30} a^{7} - \frac{7}{15} a^{5} - \frac{1}{2} a^{4} - \frac{4}{15} a^{3} - \frac{1}{2} a^{2} + \frac{13}{30} a$, $\frac{1}{90} a^{12} + \frac{1}{90} a^{10} + \frac{1}{45} a^{8} + \frac{8}{45} a^{6} - \frac{1}{2} a^{5} + \frac{17}{90} a^{4} - \frac{1}{2} a^{3} - \frac{1}{45} a^{2} - \frac{1}{2} a - \frac{7}{18}$, $\frac{1}{90} a^{13} + \frac{1}{90} a^{11} + \frac{1}{45} a^{9} + \frac{8}{45} a^{7} - \frac{1}{2} a^{6} + \frac{17}{90} a^{5} - \frac{1}{2} a^{4} - \frac{1}{45} a^{3} - \frac{1}{2} a^{2} - \frac{7}{18} a$, $\frac{1}{3321812925450} a^{14} - \frac{72784982}{61515054175} a^{12} - \frac{1331659657}{22752143325} a^{10} - \frac{8956213421}{1660906462725} a^{8} - \frac{1}{2} a^{7} + \frac{597310438634}{1660906462725} a^{6} + \frac{1391954368}{66436258509} a^{4} - \frac{1}{2} a^{3} + \frac{15805049356}{184545162525} a^{2} - \frac{1}{2} a - \frac{27460654633}{132872517018}$, $\frac{1}{3321812925450} a^{15} - \frac{72784982}{61515054175} a^{13} + \frac{185149898}{22752143325} a^{11} + \frac{101770884094}{1660906462725} a^{9} - \frac{288506341486}{1660906462725} a^{7} + \frac{29105191343}{332181292545} a^{5} - \frac{27539679108}{61515054175} a^{3} + \frac{53148170684}{332181292545} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3899874.07927 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4:C_4$ (as 16T26):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $D_4:C_4$
Character table for $D_4:C_4$

Intermediate fields

\(\Q(\sqrt{61}) \), 4.4.2042829.1, 4.2.11163.1, 4.2.680943.1, 8.2.373837707.1, 8.2.1391050107747.2, 8.4.4173150323241.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$61$61.8.6.1$x^{8} - 61 x^{4} + 59536$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
61.8.6.1$x^{8} - 61 x^{4} + 59536$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$