Normalized defining polynomial
\( x^{16} - 4 x^{15} + 15 x^{14} - 35 x^{13} + 57 x^{12} - 244 x^{10} + 1080 x^{9} - 3132 x^{8} + 6869 x^{7} - 13789 x^{6} + 20160 x^{5} - 26109 x^{4} + 27603 x^{3} - 15471 x^{2} + 8505 x - 675 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17415183620366462784744081=3^{8}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{11} - \frac{1}{15} a^{10} - \frac{7}{15} a^{9} - \frac{2}{15} a^{8} + \frac{7}{15} a^{7} + \frac{2}{5} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{4}{15} a^{3} + \frac{4}{15} a^{2} - \frac{1}{5} a$, $\frac{1}{15} a^{12} + \frac{2}{15} a^{10} + \frac{2}{5} a^{9} - \frac{1}{3} a^{8} - \frac{2}{15} a^{7} - \frac{4}{15} a^{6} - \frac{1}{3} a^{5} - \frac{1}{15} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{45} a^{13} + \frac{1}{45} a^{12} - \frac{1}{45} a^{11} - \frac{4}{45} a^{10} + \frac{7}{45} a^{9} - \frac{1}{45} a^{8} - \frac{4}{15} a^{7} + \frac{2}{5} a^{6} - \frac{7}{15} a^{5} - \frac{13}{45} a^{4} - \frac{1}{15} a^{3} + \frac{2}{15} a^{2} - \frac{1}{5} a$, $\frac{1}{45} a^{14} + \frac{1}{45} a^{12} - \frac{1}{45} a^{10} - \frac{11}{45} a^{9} - \frac{17}{45} a^{8} - \frac{1}{15} a^{6} + \frac{8}{45} a^{5} - \frac{8}{45} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{5} a$, $\frac{1}{1166351478580629507887775} a^{15} - \frac{11487103270529227236022}{1166351478580629507887775} a^{14} + \frac{708572154644064435644}{129594608731181056431975} a^{13} + \frac{20985150661091455122397}{1166351478580629507887775} a^{12} - \frac{5698901977276599671308}{388783826193543169295925} a^{11} + \frac{16113342183447029314343}{129594608731181056431975} a^{10} + \frac{61496191255535287829893}{233270295716125901577555} a^{9} - \frac{31709388596869466472121}{77756765238708633859185} a^{8} + \frac{124027626051285508225576}{388783826193543169295925} a^{7} - \frac{7485585924160884216533}{233270295716125901577555} a^{6} - \frac{440297028880214166804934}{1166351478580629507887775} a^{5} + \frac{24202989305738739067664}{388783826193543169295925} a^{4} - \frac{32010566963405366833603}{77756765238708633859185} a^{3} - \frac{1569066955075208808811}{43198202910393685477325} a^{2} - \frac{6911176507454271836978}{25918921746236211286395} a + \frac{383594983016797775856}{1727928116415747419093}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3657121.45053 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T330):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.2.11163.1, 8.2.1391050107747.2, 8.4.68412300381.1, 8.2.22804100127.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 61 | Data not computed | ||||||