Normalized defining polynomial
\( x^{16} - 3 x^{15} - 479 x^{14} + 2816 x^{13} + 79228 x^{12} + 3884251 x^{11} - 27287937 x^{10} - 90797059 x^{9} - 3792716246 x^{8} - 13822223688 x^{7} - 34767420017 x^{6} + 23198289208957 x^{5} - 404015089637913 x^{4} + 3183147219370626 x^{3} - 13908684943930888 x^{2} + 34234229555680560 x - 37606158695886896 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17328553034618181867273005889005225191371184588849=61^{12}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1195.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{471755547440276847719003429624628489529374382755487312687323674218124344709797068116464145381324742860091939305044969256} a^{15} + \frac{13660381605280068452804536122153737213575613838071985276338868551821956691579518392401292910476337480046286507362084917}{471755547440276847719003429624628489529374382755487312687323674218124344709797068116464145381324742860091939305044969256} a^{14} + \frac{64611466171526658146531907304006021649913151267407486175960777013924524499891916112501081234527442630951700325414473797}{471755547440276847719003429624628489529374382755487312687323674218124344709797068116464145381324742860091939305044969256} a^{13} - \frac{9246699420851930227065488872270039695168849021503996123871000393023352494714656865994621477864398783875367652890052024}{58969443430034605964875428703078561191171797844435914085915459277265543088724633514558018172665592857511492413130621157} a^{12} + \frac{7133478229935284712203986243784273322212551147524021558976376727084504886936959120297687690286085207399977586433063083}{58969443430034605964875428703078561191171797844435914085915459277265543088724633514558018172665592857511492413130621157} a^{11} - \frac{129632428927000132380506953110833190400766443054470742766947609123225715387653156076690801091147401846762077029410237781}{471755547440276847719003429624628489529374382755487312687323674218124344709797068116464145381324742860091939305044969256} a^{10} + \frac{24161044220137233010294223581819447835495852314672302093848267417961467110881541767312876827169203802558000964883095}{1050680506548500774429851736357747192715755863597967288835910187568205667505115964624641749178896977416685833641525544} a^{9} + \frac{172403296109817614212429164928862302997718729802655682677674481087209204468213459843712547586488076659614564557063549777}{471755547440276847719003429624628489529374382755487312687323674218124344709797068116464145381324742860091939305044969256} a^{8} + \frac{14832262458049124917085215567410579742146431491281154925962790204929609763250983102230943356460244815721848474434250481}{235877773720138423859501714812314244764687191377743656343661837109062172354898534058232072690662371430045969652522484628} a^{7} - \frac{11065342537421680797446074254684235001876054762769545079797984241064635654129922616798587325496306995984510221999108631}{117938886860069211929750857406157122382343595688871828171830918554531086177449267029116036345331185715022984826261242314} a^{6} + \frac{192316409446021059624501697175314635243293002492764085034024092152441423949133862598384577477859236038779484000065829399}{471755547440276847719003429624628489529374382755487312687323674218124344709797068116464145381324742860091939305044969256} a^{5} - \frac{62588444143054065623668863859830386496218875060337385228598292239288472048824711605562233078668751138664631037962973019}{471755547440276847719003429624628489529374382755487312687323674218124344709797068116464145381324742860091939305044969256} a^{4} - \frac{5272553674087563783837997105229546773809085136852310834991510072432820391498514670770502875903387105367440567890496213}{471755547440276847719003429624628489529374382755487312687323674218124344709797068116464145381324742860091939305044969256} a^{3} - \frac{20902430003267595852177258996737053365238124977577726239680296507164142040473963075943410342560648459365004614548333563}{235877773720138423859501714812314244764687191377743656343661837109062172354898534058232072690662371430045969652522484628} a^{2} + \frac{30909114816280191946259279949662552331860425747878686651587667166885919971284312943323691696139797094944886613155627963}{117938886860069211929750857406157122382343595688871828171830918554531086177449267029116036345331185715022984826261242314} a + \frac{4663495220210942710807659099810635183150644619130527182096350559115338362104360120087216769987110229358573049258333055}{58969443430034605964875428703078561191171797844435914085915459277265543088724633514558018172665592857511492413130621157}$
Class group and class number
$C_{2}\times C_{2}\times C_{12}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44650517371300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.1118720199956720578033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||