Normalized defining polynomial
\( x^{16} + 5 x^{14} - 2 x^{13} + 6 x^{12} - 44 x^{11} - 252 x^{10} - 602 x^{9} - 626 x^{8} - 302 x^{7} - 522 x^{6} - 1012 x^{5} - 861 x^{4} + 1698 x^{3} + 1645 x^{2} - 1016 x - 164 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16695593025891398600698809=3^{6}\cdot 73^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} - \frac{1}{16} a^{6} - \frac{3}{16} a^{5} + \frac{5}{16} a^{3} + \frac{3}{16} a^{2} - \frac{1}{4}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{1}{2} a^{3} + \frac{3}{16} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{32} a^{14} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} + \frac{1}{8} a^{6} - \frac{3}{8} a^{3} - \frac{3}{32} a^{2} + \frac{3}{8}$, $\frac{1}{4299727636153356224} a^{15} - \frac{51831831738953307}{4299727636153356224} a^{14} + \frac{50780815689988763}{2149863818076678112} a^{13} + \frac{7665949252374929}{537465954519169528} a^{12} - \frac{101933261212281779}{2149863818076678112} a^{11} - \frac{152150499386030213}{2149863818076678112} a^{10} - \frac{3103071726763309}{2149863818076678112} a^{9} + \frac{45183973576561045}{537465954519169528} a^{8} + \frac{256310820584981427}{2149863818076678112} a^{7} - \frac{160382335725901599}{1074931909038339056} a^{6} - \frac{384970250835341593}{2149863818076678112} a^{5} - \frac{29931298298509687}{2149863818076678112} a^{4} - \frac{1953677024493592615}{4299727636153356224} a^{3} + \frac{1430169915411292555}{4299727636153356224} a^{2} + \frac{419828422600901055}{1074931909038339056} a - \frac{189457296293957019}{1074931909038339056}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 113922542.516 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.2.15987.1, 4.4.389017.1, 4.2.1167051.1, 8.4.1362008036601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 73 | Data not computed | ||||||