Normalized defining polynomial
\( x^{16} - x^{15} + x^{13} + 4 x^{12} - 4 x^{11} - 9 x^{10} - 6 x^{9} - 16 x^{8} + 27 x^{7} + 60 x^{6} + 16 x^{5} - 47 x^{4} - 30 x^{3} + 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16640273717519203921=13^{4}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{34} a^{12} - \frac{5}{17} a^{11} - \frac{1}{17} a^{10} - \frac{15}{34} a^{9} + \frac{2}{17} a^{8} + \frac{4}{17} a^{7} - \frac{13}{34} a^{6} - \frac{1}{17} a^{5} - \frac{2}{17} a^{4} + \frac{9}{34} a^{3} - \frac{1}{17} a^{2} - \frac{3}{17} a - \frac{1}{34}$, $\frac{1}{34} a^{13} - \frac{1}{34} a^{10} - \frac{5}{17} a^{9} + \frac{7}{17} a^{8} - \frac{1}{34} a^{7} + \frac{2}{17} a^{6} + \frac{5}{17} a^{5} + \frac{3}{34} a^{4} - \frac{7}{17} a^{3} + \frac{4}{17} a^{2} + \frac{7}{34} a - \frac{5}{17}$, $\frac{1}{34} a^{14} - \frac{1}{34} a^{11} - \frac{5}{17} a^{10} + \frac{7}{17} a^{9} - \frac{1}{34} a^{8} + \frac{2}{17} a^{7} + \frac{5}{17} a^{6} + \frac{3}{34} a^{5} - \frac{7}{17} a^{4} + \frac{4}{17} a^{3} + \frac{7}{34} a^{2} - \frac{5}{17} a$, $\frac{1}{3183182} a^{15} - \frac{16599}{3183182} a^{14} - \frac{1311}{187246} a^{13} + \frac{7577}{1591591} a^{12} - \frac{710071}{3183182} a^{11} + \frac{23623}{187246} a^{10} + \frac{315521}{1591591} a^{9} - \frac{336489}{3183182} a^{8} + \frac{1275063}{3183182} a^{7} - \frac{335929}{1591591} a^{6} - \frac{89881}{187246} a^{5} - \frac{78585}{3183182} a^{4} - \frac{328607}{1591591} a^{3} + \frac{1452065}{3183182} a^{2} + \frac{1211119}{3183182} a + \frac{858271}{3183182}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1759.6652294 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T157):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.4.313788397.1 x2, 8.4.4079249161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |