Normalized defining polynomial
\( x^{16} + 60 x^{14} + 880 x^{12} - 37820 x^{10} - 1146490 x^{8} - 10099500 x^{6} - 55698400 x^{4} - 284022100 x^{2} + 948948025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(162407121785611878400000000000000=2^{36}\cdot 5^{14}\cdot 61^{2}\cdot 101^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{8} - \frac{1}{4}$, $\frac{1}{40} a^{9} - \frac{1}{40} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{40} a^{10} - \frac{1}{40} a^{8} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{40} a^{11} - \frac{1}{40} a^{8} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{40} a^{12} - \frac{1}{40} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8}$, $\frac{1}{80} a^{13} - \frac{1}{80} a^{12} - \frac{1}{80} a^{9} + \frac{1}{80} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{3}{16} a^{5} - \frac{3}{16} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{3}{16} a + \frac{3}{16}$, $\frac{1}{46074143220770064820352184400} a^{14} - \frac{62039289895299780236582369}{9214828644154012964070436880} a^{12} + \frac{1335346919385584983694837}{224751918150097877172449680} a^{10} - \frac{405790629427624357191673}{151062764658262507607712080} a^{8} + \frac{2176089505123653838585082911}{9214828644154012964070436880} a^{6} - \frac{267125083994868793146852375}{1842965728830802592814087376} a^{4} - \frac{34558325681213220912961071}{96998196254252768042846704} a^{2} - \frac{53912588877881247570195}{299134187442103975460816}$, $\frac{1}{46074143220770064820352184400} a^{15} + \frac{13286517039156345453574523}{2303707161038503241017609220} a^{13} - \frac{1}{80} a^{12} + \frac{1335346919385584983694837}{224751918150097877172449680} a^{11} + \frac{185311741100082123488091}{18882845582282813450964010} a^{9} - \frac{1}{80} a^{8} - \frac{127617655914849402432526309}{9214828644154012964070436880} a^{7} - \frac{1}{4} a^{6} + \frac{4901936885056668312861813}{115185358051925162050880461} a^{5} - \frac{3}{16} a^{4} + \frac{38190321509476355119173957}{96998196254252768042846704} a^{3} - \frac{1}{4} a^{2} + \frac{543767816878311957177}{74783546860525993865204} a - \frac{3}{16}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2411440455.69 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.4.6464000000.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 101 | Data not computed | ||||||