Normalized defining polynomial
\( x^{16} - 8 x^{14} - 16 x^{13} + 36 x^{12} + 96 x^{11} + 12 x^{10} - 192 x^{9} - 254 x^{8} - 120 x^{7} + 104 x^{6} + 400 x^{5} + 192 x^{4} - 336 x^{3} - 216 x^{2} + 168 x + 14 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1622647227216566419456=2^{48}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{31} a^{13} + \frac{1}{31} a^{12} - \frac{2}{31} a^{11} + \frac{11}{31} a^{10} - \frac{1}{31} a^{9} + \frac{9}{31} a^{8} + \frac{1}{31} a^{7} - \frac{15}{31} a^{6} + \frac{14}{31} a^{5} - \frac{2}{31} a^{4} - \frac{2}{31} a^{3} + \frac{11}{31} a^{2} - \frac{10}{31} a + \frac{2}{31}$, $\frac{1}{31} a^{14} - \frac{3}{31} a^{12} + \frac{13}{31} a^{11} - \frac{12}{31} a^{10} + \frac{10}{31} a^{9} - \frac{8}{31} a^{8} + \frac{15}{31} a^{7} - \frac{2}{31} a^{6} + \frac{15}{31} a^{5} + \frac{13}{31} a^{3} + \frac{10}{31} a^{2} + \frac{12}{31} a - \frac{2}{31}$, $\frac{1}{1014548459395509553} a^{15} + \frac{6777071828803574}{1014548459395509553} a^{14} + \frac{1197372559293971}{1014548459395509553} a^{13} - \frac{454927187673753319}{1014548459395509553} a^{12} + \frac{447931591759632875}{1014548459395509553} a^{11} + \frac{445321389841428465}{1014548459395509553} a^{10} - \frac{20778621561757469}{1014548459395509553} a^{9} - \frac{172402674920606608}{1014548459395509553} a^{8} + \frac{10903078563921903}{27420228632311069} a^{7} - \frac{258129826970146270}{1014548459395509553} a^{6} - \frac{292739062483702507}{1014548459395509553} a^{5} + \frac{483759553930430695}{1014548459395509553} a^{4} - \frac{470179660677462825}{1014548459395509553} a^{3} - \frac{2219070365070621}{32727369657919663} a^{2} - \frac{497191789977766925}{1014548459395509553} a - \frac{39565114398543825}{1014548459395509553}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26399.5973815 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_8):C_2$ (as 16T126):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $(C_2\times D_8):C_2$ |
| Character table for $(C_2\times D_8):C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.50176.1, 4.2.1792.1, 4.4.7168.1, 8.2.1438646272.4, 8.2.359661568.1, 8.4.10070523904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |