Normalized defining polynomial
\( x^{16} - 6 x^{15} - 24 x^{14} + 486 x^{13} - 13097 x^{12} + 75084 x^{11} - 627886 x^{10} + 2570953 x^{9} - 9369992 x^{8} + 29169414 x^{7} + 2512621 x^{6} - 36928272 x^{5} + 878892788 x^{4} - 2189230097 x^{3} + 2780443254 x^{2} - 1460860467 x + 926982331 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(161765019327832493697466398205322265625=5^{12}\cdot 13^{2}\cdot 29^{8}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $244.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{5} - \frac{2}{5}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{6} - \frac{2}{5} a$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{9} - \frac{2}{5} a^{7} + \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{3}{10} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{3}{10}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{10} - \frac{1}{10} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{3}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{30} a^{14} - \frac{1}{30} a^{12} - \frac{1}{10} a^{11} + \frac{1}{15} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{2}{15} a^{7} - \frac{11}{30} a^{6} + \frac{11}{30} a^{5} + \frac{1}{5} a^{4} + \frac{13}{30} a^{3} - \frac{1}{30} a^{2} + \frac{1}{5} a - \frac{1}{6}$, $\frac{1}{20992855676095192573987018947949970264866992688434512959736471708070} a^{15} + \frac{140438824671772411751622235316894504419775772846650926196423951171}{20992855676095192573987018947949970264866992688434512959736471708070} a^{14} - \frac{181598377618250772934728560315326982553078894408324320562595147493}{4198571135219038514797403789589994052973398537686902591947294341614} a^{13} - \frac{56650785145756529361598488067605311915490699114308525912376062623}{10496427838047596286993509473974985132433496344217256479868235854035} a^{12} - \frac{824688609454274224964204209905424806531642556021168899469206049849}{20992855676095192573987018947949970264866992688434512959736471708070} a^{11} + \frac{37862795771030279507569562357136427131160034485117327649984567603}{4198571135219038514797403789589994052973398537686902591947294341614} a^{10} + \frac{266918046520673241035836337688938128914408245606740890025949925059}{3498809279349198762331169824658328377477832114739085493289411951345} a^{9} + \frac{146933168332399171247015205064979133439225972199213410791857143691}{1908441425099562961271547177086360933169726608039501178157861064370} a^{8} - \frac{38833838350773895873565933194212351807420568381462327546131234131}{538278350669107501897103049947435134996589556113705460506063377130} a^{7} - \frac{3257568814392129050913951801475534152294467427762617241132710191201}{10496427838047596286993509473974985132433496344217256479868235854035} a^{6} + \frac{7680133383179465034566035837574171303325023671285648260909695707447}{20992855676095192573987018947949970264866992688434512959736471708070} a^{5} - \frac{225759939714355603384418854631116144019591495599352260899989277413}{20992855676095192573987018947949970264866992688434512959736471708070} a^{4} - \frac{3070984978498323286617649290786007440635488932975153138530761713382}{10496427838047596286993509473974985132433496344217256479868235854035} a^{3} - \frac{17222238319293951235962851670351381899771137844543259950902994003}{677188892777264276580226417675805492415064280272081063217305538970} a^{2} + \frac{720948485717083119878788079567721628863059287239278536227722440793}{4198571135219038514797403789589994052973398537686902591947294341614} a + \frac{143039885743479656243018568618108114006317239773845415670961499959}{381688285019912592254309435417272186633945321607900235631572212874}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1788699334250 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1220 are not computed |
| Character table for t16n1220 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2813}) \), \(\Q(\sqrt{14065}) \), 4.4.725.1, 4.4.6821525.1, \(\Q(\sqrt{5}, \sqrt{2813})\), 8.8.39134423996850625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |