Normalized defining polynomial
\( x^{16} - 8 x^{15} + 150 x^{14} - 910 x^{13} + 2815 x^{12} - 5424 x^{11} - 460598 x^{10} + 2331975 x^{9} - 25428140 x^{8} + 87696510 x^{7} - 456607633 x^{6} + 1072701854 x^{5} - 2845882150 x^{4} + 4001565485 x^{3} - 4522732490 x^{2} + 2686818563 x - 233420339 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(161765019327832493697466398205322265625=5^{12}\cdot 13^{2}\cdot 29^{8}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $244.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{5} + \frac{2}{5}$, $\frac{1}{5} a^{6} + \frac{2}{5} a$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{2}$, $\frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{2}{25} a^{6} - \frac{2}{25} a^{5} + \frac{7}{25} a^{3} + \frac{7}{25} a^{2} - \frac{11}{25} a + \frac{11}{25}$, $\frac{1}{25} a^{9} + \frac{1}{25} a^{7} + \frac{1}{25} a^{6} + \frac{2}{25} a^{5} + \frac{2}{25} a^{4} + \frac{2}{5} a^{3} + \frac{12}{25} a^{2} - \frac{3}{25} a + \frac{9}{25}$, $\frac{1}{25} a^{10} - \frac{1}{25} a^{5} - \frac{6}{25}$, $\frac{1}{25} a^{11} - \frac{1}{25} a^{6} - \frac{6}{25} a$, $\frac{1}{250} a^{12} + \frac{2}{125} a^{11} + \frac{2}{125} a^{10} - \frac{1}{50} a^{9} - \frac{8}{125} a^{7} + \frac{1}{250} a^{6} - \frac{2}{125} a^{5} - \frac{1}{25} a^{4} + \frac{3}{10} a^{3} + \frac{32}{125} a^{2} - \frac{7}{125} a + \frac{51}{250}$, $\frac{1}{250} a^{13} - \frac{1}{125} a^{11} - \frac{1}{250} a^{10} + \frac{2}{125} a^{8} + \frac{3}{50} a^{7} + \frac{1}{125} a^{6} + \frac{3}{125} a^{5} - \frac{1}{10} a^{4} - \frac{48}{125} a^{3} - \frac{12}{25} a^{2} - \frac{63}{250} a + \frac{33}{125}$, $\frac{1}{7521193316884234026384796750} a^{14} - \frac{7}{7521193316884234026384796750} a^{13} - \frac{1891467734783053141158397}{3760596658442117013192398375} a^{12} + \frac{4539522563479327538780171}{1504238663376846805276959350} a^{11} - \frac{62826993379538642033040341}{7521193316884234026384796750} a^{10} + \frac{53036758035778682318888517}{3760596658442117013192398375} a^{9} - \frac{57575114445554206815430293}{7521193316884234026384796750} a^{8} - \frac{156466897655764345932031341}{7521193316884234026384796750} a^{7} + \frac{5008474132559926689500321}{150423866337684680527695935} a^{6} - \frac{7801951579635875817184619}{7521193316884234026384796750} a^{5} + \frac{285814768686357469026019839}{7521193316884234026384796750} a^{4} - \frac{414240580159573385284933879}{3760596658442117013192398375} a^{3} - \frac{2478902571041122369036873631}{7521193316884234026384796750} a^{2} + \frac{586165603937404102130806201}{1504238663376846805276959350} a - \frac{790865351904776319457230612}{3760596658442117013192398375}$, $\frac{1}{107395119371789977662748512793250} a^{15} + \frac{3566}{53697559685894988831374256396625} a^{14} + \frac{14677586419088458713220756489}{107395119371789977662748512793250} a^{13} - \frac{4896503180361687897541439707}{4295804774871599106509940511730} a^{12} - \frac{900588181944920085388064472497}{53697559685894988831374256396625} a^{11} + \frac{659125010850649957680082412853}{107395119371789977662748512793250} a^{10} + \frac{135048144947738633279724428273}{107395119371789977662748512793250} a^{9} - \frac{524461116324857609183254289547}{53697559685894988831374256396625} a^{8} - \frac{549279751402762884847828681753}{21479023874357995532549702558650} a^{7} - \frac{5455021785400761023722814717171}{107395119371789977662748512793250} a^{6} - \frac{11491886692624953496072087978}{429580477487159910650994051173} a^{5} - \frac{7184689179067913154713184363207}{107395119371789977662748512793250} a^{4} - \frac{38847738555188825104718305809819}{107395119371789977662748512793250} a^{3} - \frac{2671631796003067763622257792363}{10739511937178997766274851279325} a^{2} - \frac{49303060463347842344968101430791}{107395119371789977662748512793250} a + \frac{189526818034952744777250275597}{492638162255917328728204187125}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2058750769770 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1220 are not computed |
| Character table for t16n1220 is not computed |
Intermediate fields
| \(\Q(\sqrt{2813}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{14065}) \), 4.4.725.1, \(\Q(\sqrt{5}, \sqrt{2813})\), 4.4.6821525.1, 8.8.39134423996850625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |