Properties

Label 16.4.16141630445...0000.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{16}\cdot 3^{12}\cdot 5^{10}\cdot 83^{4}$
Root discriminant $37.63$
Ramified primes $2, 3, 5, 83$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1665

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 0, 250, 0, -505, 0, -650, 0, 109, 0, 335, 0, 134, 0, 20, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 20*x^14 + 134*x^12 + 335*x^10 + 109*x^8 - 650*x^6 - 505*x^4 + 250*x^2 + 25)
 
gp: K = bnfinit(x^16 + 20*x^14 + 134*x^12 + 335*x^10 + 109*x^8 - 650*x^6 - 505*x^4 + 250*x^2 + 25, 1)
 

Normalized defining polynomial

\( x^{16} + 20 x^{14} + 134 x^{12} + 335 x^{10} + 109 x^{8} - 650 x^{6} - 505 x^{4} + 250 x^{2} + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(16141630445159040000000000=2^{16}\cdot 3^{12}\cdot 5^{10}\cdot 83^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.63$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 83$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} - \frac{2}{5} a^{8} + \frac{1}{3} a^{6} - \frac{2}{5} a^{4} + \frac{1}{3}$, $\frac{1}{15} a^{13} - \frac{2}{5} a^{9} + \frac{1}{3} a^{7} - \frac{2}{5} a^{5} + \frac{1}{3} a$, $\frac{1}{2299425} a^{14} - \frac{484}{153295} a^{12} - \frac{2639}{17825} a^{10} - \frac{88427}{459885} a^{8} - \frac{303992}{766475} a^{6} - \frac{52553}{153295} a^{4} - \frac{4826}{10695} a^{2} + \frac{591}{30659}$, $\frac{1}{2299425} a^{15} - \frac{484}{153295} a^{13} - \frac{2639}{17825} a^{11} - \frac{88427}{459885} a^{9} - \frac{303992}{766475} a^{7} - \frac{52553}{153295} a^{5} - \frac{4826}{10695} a^{3} + \frac{591}{30659} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 863171.587527 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1665:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 6144
The 78 conjugacy class representatives for t16n1665 are not computed
Character table for t16n1665 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.56025.1, 8.8.3138800625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.3$x^{4} + 2 x^{2} + 4 x + 4$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
2.12.12.3$x^{12} - 16 x^{10} - 51 x^{8} - 8 x^{6} + 43 x^{4} + 24 x^{2} - 57$$2$$6$$12$12T134$[2, 2, 2, 2, 2, 2]^{6}$
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.12.12.23$x^{12} + 21 x^{11} + 21 x^{10} + 63 x^{9} + 36 x^{8} + 54 x^{7} + 90 x^{6} + 81 x^{3} - 81$$3$$4$$12$$S_3 \times C_4$$[3/2]_{2}^{4}$
$5$5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$83$83.4.0.1$x^{4} - x + 22$$1$$4$$0$$C_4$$[\ ]^{4}$
83.4.0.1$x^{4} - x + 22$$1$$4$$0$$C_4$$[\ ]^{4}$
83.8.4.1$x^{8} + 303116 x^{4} - 571787 x^{2} + 22969827364$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$