Normalized defining polynomial
\( x^{16} - 74 x^{14} + 3554 x^{12} - 5822 x^{11} - 71858 x^{10} + 287902 x^{9} + 75018 x^{8} - 1842376 x^{7} + 1590774 x^{6} + 4422342 x^{5} - 5089343 x^{4} - 1701254 x^{3} + 5084664 x^{2} - 3270488 x + 775024 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1599875043672267792208865723998201=41^{14}\cdot 59^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{16} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{16} a^{5} + \frac{1}{16} a^{4} - \frac{1}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{12} + \frac{1}{16} a^{9} + \frac{3}{16} a^{6} - \frac{5}{16} a^{3} - \frac{1}{2}$, $\frac{1}{21712} a^{13} + \frac{503}{21712} a^{12} - \frac{275}{21712} a^{11} + \frac{134}{1357} a^{10} + \frac{419}{5428} a^{9} - \frac{37}{5428} a^{8} + \frac{2719}{21712} a^{7} + \frac{1777}{21712} a^{6} - \frac{1917}{21712} a^{5} - \frac{427}{5428} a^{4} + \frac{919}{2714} a^{3} + \frac{339}{2714} a^{2} - \frac{5}{23} a - \frac{7}{23}$, $\frac{1}{42946336} a^{14} - \frac{577}{42946336} a^{13} - \frac{11571}{42946336} a^{12} - \frac{26337}{998752} a^{11} - \frac{3221677}{42946336} a^{10} - \frac{1917431}{42946336} a^{9} + \frac{1145027}{42946336} a^{8} + \frac{8990573}{42946336} a^{7} - \frac{1307713}{42946336} a^{6} - \frac{6812913}{42946336} a^{5} + \frac{6613705}{42946336} a^{4} - \frac{18056597}{42946336} a^{3} - \frac{579519}{1342073} a^{2} + \frac{22367}{45494} a - \frac{22577}{90988}$, $\frac{1}{22852698119046011794228711419539343232} a^{15} + \frac{114278655243741383471446735855}{11426349059523005897114355709769671616} a^{14} - \frac{155033572032760618686476635171111}{11426349059523005897114355709769671616} a^{13} - \frac{46475345188708935548611233500607991}{5713174529761502948557177854884835808} a^{12} - \frac{354608905938588476257010931955741199}{11426349059523005897114355709769671616} a^{11} - \frac{1196888825495157813101474001849066693}{11426349059523005897114355709769671616} a^{10} - \frac{1256983030422353787103825620669457659}{11426349059523005897114355709769671616} a^{9} - \frac{914011587714879970441081585699681527}{11426349059523005897114355709769671616} a^{8} + \frac{2260388082713649870213082878372044007}{11426349059523005897114355709769671616} a^{7} - \frac{535114563230734264296371000142071315}{5713174529761502948557177854884835808} a^{6} - \frac{1411603019413090362149087968235276173}{11426349059523005897114355709769671616} a^{5} - \frac{1362887479551665114606710334141455055}{11426349059523005897114355709769671616} a^{4} + \frac{1328516590983602621109605316073457013}{22852698119046011794228711419539343232} a^{3} - \frac{540318117610272180101463406765071967}{2856587264880751474278588927442417904} a^{2} + \frac{19990294749085554549325926279850287}{48416733303063584309806591990549456} a - \frac{14264877859027500055672899802231343}{48416733303063584309806591990549456}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88858553706.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 4.2.99179.1, 4.2.4066339.1, 8.4.677939627379761.3 x2, 8.4.16535112862921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $59$ | $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |