Normalized defining polynomial
\( x^{16} - 2 x^{15} + 94 x^{14} - 188 x^{13} + 2279 x^{12} - 9228 x^{11} + 21074 x^{10} - 153906 x^{9} + 194689 x^{8} - 762930 x^{7} + 2309973 x^{6} - 7056 x^{5} + 10741382 x^{4} + 2332284 x^{3} + 17110206 x^{2} + 18840328 x + 4742981 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1591115136537072994381860110336=2^{16}\cdot 43^{5}\cdot 2777^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{61} a^{14} + \frac{17}{61} a^{13} - \frac{15}{61} a^{12} - \frac{9}{61} a^{11} - \frac{13}{61} a^{10} + \frac{25}{61} a^{9} + \frac{20}{61} a^{8} + \frac{8}{61} a^{7} + \frac{29}{61} a^{6} + \frac{20}{61} a^{5} + \frac{16}{61} a^{4} - \frac{20}{61} a^{3} - \frac{19}{61} a^{2} - \frac{7}{61} a - \frac{27}{61}$, $\frac{1}{2649417591324865698404236877552377655635539289116215017} a^{15} - \frac{6420270611666925964487172408174922711400962047612983}{2649417591324865698404236877552377655635539289116215017} a^{14} - \frac{951887678678275345141202020174633412810741426109554472}{2649417591324865698404236877552377655635539289116215017} a^{13} + \frac{133793293721896017394635618812491942197210687589077413}{2649417591324865698404236877552377655635539289116215017} a^{12} + \frac{684353216680829515824994717238366237327589185920150516}{2649417591324865698404236877552377655635539289116215017} a^{11} + \frac{603829324775933712025273139692753210899643750617732978}{2649417591324865698404236877552377655635539289116215017} a^{10} + \frac{205124746857597231026040177108631702859022665530019949}{2649417591324865698404236877552377655635539289116215017} a^{9} - \frac{960922489436352963378692338242203215254647556633526029}{2649417591324865698404236877552377655635539289116215017} a^{8} + \frac{610702855398971775557193136965192639798978476594655560}{2649417591324865698404236877552377655635539289116215017} a^{7} - \frac{365718863832017894254865015237120088526037543845907929}{2649417591324865698404236877552377655635539289116215017} a^{6} + \frac{265090546420640916636159276523561345437591531595459181}{2649417591324865698404236877552377655635539289116215017} a^{5} + \frac{8180884012914098929440256253903744308151148264617926}{43433075267620749154167817664793076321894086706823197} a^{4} + \frac{310716462130340862852689390490271615886693540876839291}{2649417591324865698404236877552377655635539289116215017} a^{3} + \frac{929963545918212695113557082669032754240313453837690041}{2649417591324865698404236877552377655635539289116215017} a^{2} - \frac{1024817271663318042830633364823768093524548146252041284}{2649417591324865698404236877552377655635539289116215017} a - \frac{1126859628446945744590900657481902841473693088235098157}{2649417591324865698404236877552377655635539289116215017}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 271134094.665 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12288 |
| The 64 conjugacy class representatives for t16n1760 are not computed |
| Character table for t16n1760 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.12.12.8 | $x^{12} + 8 x^{10} - 31 x^{8} + 64 x^{6} - 53 x^{4} - 8 x^{2} - 45$ | $2$ | $6$ | $12$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||