Properties

Label 16.4.15860140010...4864.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{16}\cdot 3^{14}\cdot 11^{6}\cdot 13^{4}$
Root discriminant $24.41$
Ramified primes $2, 3, 11, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^2.C_2^5.C_2$ (as 16T511)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16, 48, -8, -168, -128, 276, 154, -426, 43, 294, -167, 36, -38, 18, 7, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 7*x^14 + 18*x^13 - 38*x^12 + 36*x^11 - 167*x^10 + 294*x^9 + 43*x^8 - 426*x^7 + 154*x^6 + 276*x^5 - 128*x^4 - 168*x^3 - 8*x^2 + 48*x + 16)
 
gp: K = bnfinit(x^16 - 6*x^15 + 7*x^14 + 18*x^13 - 38*x^12 + 36*x^11 - 167*x^10 + 294*x^9 + 43*x^8 - 426*x^7 + 154*x^6 + 276*x^5 - 128*x^4 - 168*x^3 - 8*x^2 + 48*x + 16, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 7 x^{14} + 18 x^{13} - 38 x^{12} + 36 x^{11} - 167 x^{10} + 294 x^{9} + 43 x^{8} - 426 x^{7} + 154 x^{6} + 276 x^{5} - 128 x^{4} - 168 x^{3} - 8 x^{2} + 48 x + 16 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(15860140010594477604864=2^{16}\cdot 3^{14}\cdot 11^{6}\cdot 13^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{3}{16} a^{7} - \frac{7}{16} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{1168} a^{14} - \frac{3}{1168} a^{13} + \frac{1}{146} a^{12} - \frac{67}{584} a^{11} + \frac{39}{584} a^{10} + \frac{49}{584} a^{9} + \frac{31}{1168} a^{8} - \frac{93}{1168} a^{7} - \frac{109}{584} a^{6} + \frac{59}{146} a^{5} + \frac{15}{146} a^{4} - \frac{12}{73} a^{3} - \frac{11}{146} a^{2} + \frac{71}{146} a - \frac{22}{73}$, $\frac{1}{441137248} a^{15} - \frac{5253}{13785539} a^{14} - \frac{1321443}{441137248} a^{13} - \frac{645265}{110284312} a^{12} + \frac{6209739}{55142156} a^{11} - \frac{6984583}{110284312} a^{10} + \frac{101678585}{441137248} a^{9} - \frac{5847359}{110284312} a^{8} - \frac{15913935}{441137248} a^{7} + \frac{434445}{27571078} a^{6} + \frac{8438443}{27571078} a^{5} - \frac{7859105}{110284312} a^{4} + \frac{27245885}{55142156} a^{3} + \frac{10834443}{27571078} a^{2} + \frac{22950301}{55142156} a + \frac{5396239}{13785539}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 308755.635865 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.C_2^5.C_2$ (as 16T511):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 46 conjugacy class representatives for $C_2^2.C_2^5.C_2$
Character table for $C_2^2.C_2^5.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), 4.2.20592.2, 4.4.4752.1, 4.2.5616.2, 8.4.745189632.1, 8.4.125937047808.4, 8.4.3816274176.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.8.7.2$x^{8} - 3$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
3.8.7.2$x^{8} - 3$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.3.1$x^{4} + 33$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.4.3.1$x^{4} + 33$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$