Normalized defining polynomial
\( x^{16} - 2 x^{15} - 14 x^{14} + 388 x^{13} - 3078 x^{12} + 6480 x^{11} - 45460 x^{10} - 143382 x^{9} + 296072 x^{8} - 4981822 x^{7} + 19968220 x^{6} - 4230432 x^{5} + 296743745 x^{4} + 382690212 x^{3} + 759573920 x^{2} + 716455696 x + 249941449 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1571275555715210001755383712793895489=23^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{236} a^{10} + \frac{1}{236} a^{9} + \frac{1}{236} a^{8} + \frac{5}{118} a^{7} + \frac{27}{118} a^{6} + \frac{11}{118} a^{5} + \frac{3}{236} a^{4} + \frac{65}{236} a^{3} - \frac{16}{59} a^{2} + \frac{33}{236} a + \frac{33}{236}$, $\frac{1}{236} a^{11} + \frac{9}{236} a^{8} + \frac{11}{59} a^{7} - \frac{8}{59} a^{6} - \frac{19}{236} a^{5} - \frac{14}{59} a^{4} + \frac{107}{236} a^{3} + \frac{97}{236} a^{2} - \frac{1}{2} a + \frac{85}{236}$, $\frac{1}{472} a^{12} + \frac{9}{472} a^{9} - \frac{15}{472} a^{8} - \frac{4}{59} a^{7} + \frac{99}{472} a^{6} + \frac{31}{236} a^{5} + \frac{107}{472} a^{4} - \frac{21}{472} a^{3} + \frac{3}{8} a^{2} - \frac{151}{472} a + \frac{1}{8}$, $\frac{1}{472} a^{13} - \frac{1}{472} a^{10} - \frac{25}{472} a^{9} - \frac{21}{236} a^{8} - \frac{1}{472} a^{7} - \frac{3}{236} a^{6} - \frac{113}{472} a^{5} - \frac{51}{472} a^{4} - \frac{1}{472} a^{3} + \frac{17}{472} a^{2} + \frac{201}{472} a + \frac{71}{236}$, $\frac{1}{472} a^{14} - \frac{1}{472} a^{11} - \frac{1}{472} a^{10} - \frac{9}{236} a^{9} + \frac{23}{472} a^{8} - \frac{1}{236} a^{7} + \frac{3}{472} a^{6} + \frac{5}{472} a^{5} + \frac{71}{472} a^{4} + \frac{161}{472} a^{3} - \frac{155}{472} a^{2} + \frac{113}{236} a + \frac{21}{118}$, $\frac{1}{1250413793451088884968722562726893522207100775174912536} a^{15} - \frac{629883535486839168353557766075256456582451939841507}{625206896725544442484361281363446761103550387587456268} a^{14} - \frac{104668192052196397858474907703788753350618619176695}{625206896725544442484361281363446761103550387587456268} a^{13} - \frac{469197912297710839545918854192869637989643313918963}{625206896725544442484361281363446761103550387587456268} a^{12} + \frac{1550235037205197791255195927163518150905406025240753}{1250413793451088884968722562726893522207100775174912536} a^{11} + \frac{200225122474086304029620807494722591644042468989084}{156301724181386110621090320340861690275887596896864067} a^{10} - \frac{10734617683180833825166460641500556367406788904076704}{156301724181386110621090320340861690275887596896864067} a^{9} + \frac{65264002393139984019898945423289239964174935609100719}{1250413793451088884968722562726893522207100775174912536} a^{8} + \frac{149990794438610088575781109500899213091908237751386649}{1250413793451088884968722562726893522207100775174912536} a^{7} + \frac{12507132187473354745157114939441317804518815060816609}{312603448362772221242180640681723380551775193793728134} a^{6} - \frac{203100703092535984229502542912920482538539987073832679}{1250413793451088884968722562726893522207100775174912536} a^{5} + \frac{37218864869307431094602296471345975636705425305148267}{156301724181386110621090320340861690275887596896864067} a^{4} - \frac{8199761463877557877626022835239357373568024407997975}{625206896725544442484361281363446761103550387587456268} a^{3} - \frac{60506413993204196524450560793573097870206411716014801}{1250413793451088884968722562726893522207100775174912536} a^{2} + \frac{69503721092868264310047082881826546019936443022662813}{1250413793451088884968722562726893522207100775174912536} a - \frac{590974544610860326136145123326397666198987926673703239}{1250413793451088884968722562726893522207100775174912536}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 167735292148 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.54500230757132921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |