Normalized defining polynomial
\( x^{16} - 4 x^{15} + 63 x^{14} - 408 x^{13} + 1614 x^{12} - 6300 x^{11} + 24089 x^{10} - 61437 x^{9} + 90222 x^{8} - 137237 x^{7} + 374301 x^{6} - 299541 x^{5} - 1784877 x^{4} + 4589903 x^{3} - 1756820 x^{2} - 5065413 x + 4559237 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1571275555715210001755383712793895489=23^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{25252} a^{13} - \frac{29}{236} a^{12} + \frac{5075}{25252} a^{11} + \frac{855}{25252} a^{10} - \frac{977}{12626} a^{9} - \frac{5981}{25252} a^{8} - \frac{698}{6313} a^{7} - \frac{6383}{25252} a^{6} - \frac{851}{12626} a^{5} - \frac{8767}{25252} a^{4} - \frac{1185}{25252} a^{3} - \frac{2783}{12626} a^{2} + \frac{7243}{25252} a + \frac{519}{12626}$, $\frac{1}{25252} a^{14} - \frac{1261}{12626} a^{12} + \frac{1979}{12626} a^{11} - \frac{349}{25252} a^{10} + \frac{3863}{25252} a^{9} - \frac{1615}{25252} a^{8} + \frac{4103}{25252} a^{7} - \frac{10583}{25252} a^{6} - \frac{12405}{25252} a^{5} + \frac{961}{6313} a^{4} + \frac{4171}{25252} a^{3} - \frac{4313}{25252} a^{2} - \frac{10839}{25252} a - \frac{53}{118}$, $\frac{1}{110496337287428315738103601952466764} a^{15} + \frac{126492771351298234361295601435}{110496337287428315738103601952466764} a^{14} - \frac{77320330333409913138333436148}{27624084321857078934525900488116691} a^{13} - \frac{2462448977571929346687276893438947}{27624084321857078934525900488116691} a^{12} - \frac{57599058547984107947853555695349}{1872819276058107046408535626312996} a^{11} + \frac{13423484038486740261602390253953275}{55248168643714157869051800976233382} a^{10} + \frac{6787817308658743795434534780988008}{27624084321857078934525900488116691} a^{9} - \frac{486236889463846416476125872113690}{27624084321857078934525900488116691} a^{8} - \frac{2969466859027704533007915511278592}{27624084321857078934525900488116691} a^{7} + \frac{15737351292936893257555035978658957}{55248168643714157869051800976233382} a^{6} + \frac{38170222990662538694864103046747843}{110496337287428315738103601952466764} a^{5} + \frac{28652846757474689716379179961153135}{110496337287428315738103601952466764} a^{4} - \frac{18341131763267334107372731272911917}{55248168643714157869051800976233382} a^{3} - \frac{6062212040937860001737148335497123}{55248168643714157869051800976233382} a^{2} - \frac{44570454532419131738952180061400997}{110496337287428315738103601952466764} a - \frac{6581607316042485910647804718902961}{27624084321857078934525900488116691}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 151455297452 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.54500230757132921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||