Normalized defining polynomial
\( x^{16} - 3 x^{15} + 17 x^{14} + 54 x^{13} - 207 x^{12} + 611 x^{11} + 1348 x^{10} - 3327 x^{9} + 4023 x^{8} + 19634 x^{7} - 197 x^{6} - 37023 x^{5} + 74499 x^{4} + 229926 x^{3} - 185436 x^{2} - 316912 x + 42176 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15231185783695887615175635001=17^{14}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{16} a^{6} + \frac{1}{8} a^{4} + \frac{3}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{1072} a^{13} + \frac{3}{1072} a^{12} + \frac{45}{536} a^{11} - \frac{37}{1072} a^{10} - \frac{11}{1072} a^{9} + \frac{17}{536} a^{8} - \frac{153}{1072} a^{7} + \frac{217}{1072} a^{6} - \frac{69}{536} a^{5} - \frac{231}{1072} a^{4} + \frac{5}{16} a^{3} + \frac{111}{536} a^{2} + \frac{121}{268} a - \frac{28}{67}$, $\frac{1}{2144} a^{14} - \frac{1}{2144} a^{13} - \frac{7}{268} a^{12} + \frac{139}{2144} a^{11} - \frac{131}{2144} a^{10} + \frac{53}{536} a^{9} - \frac{21}{2144} a^{8} - \frac{243}{2144} a^{7} + \frac{25}{268} a^{6} - \frac{215}{2144} a^{5} - \frac{81}{2144} a^{4} - \frac{45}{536} a^{3} - \frac{21}{67} a^{2} + \frac{37}{268} a - \frac{11}{67}$, $\frac{1}{6000106440478837933756974353984} a^{15} - \frac{671225127198439858826654475}{3000053220239418966878487176992} a^{14} - \frac{2311402408014851013271983213}{6000106440478837933756974353984} a^{13} - \frac{26182460884254824866510692231}{6000106440478837933756974353984} a^{12} + \frac{93193521753072780286640415129}{3000053220239418966878487176992} a^{11} - \frac{506127244135527835678145316683}{6000106440478837933756974353984} a^{10} + \frac{645811608176087983959167369897}{6000106440478837933756974353984} a^{9} - \frac{305564056862374786939715557363}{3000053220239418966878487176992} a^{8} - \frac{328656038363551099856853463583}{6000106440478837933756974353984} a^{7} - \frac{750867269150886767684872285549}{6000106440478837933756974353984} a^{6} - \frac{211365118992883497302748841}{20134585370734355482405954208} a^{5} - \frac{416721257164164800532159886393}{6000106440478837933756974353984} a^{4} - \frac{1336328016994226344748021867107}{3000053220239418966878487176992} a^{3} + \frac{327400107533512914487345023025}{1500026610119709483439243588496} a^{2} - \frac{12833587925947830815676831761}{93751663132481842714952724281} a + \frac{22023506740805514371483479512}{93751663132481842714952724281}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 71792452.1584 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.329171.1, 4.4.4913.1, 4.2.19363.1, 8.4.1842010303097.1 x2, 8.4.108353547241.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |