Normalized defining polynomial
\( x^{16} - 43 x^{14} + 147 x^{12} + 3847 x^{10} - 16998 x^{8} - 53987 x^{6} + 275241 x^{4} + 624962 x^{2} + 28561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15231185783695887615175635001=17^{14}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{26} a^{11} - \frac{3}{26} a^{9} + \frac{1}{26} a^{7} - \frac{1}{2} a^{5} + \frac{3}{13} a^{3} - \frac{1}{2} a^{2} + \frac{4}{13} a$, $\frac{1}{52} a^{12} + \frac{5}{26} a^{10} - \frac{3}{13} a^{8} - \frac{1}{4} a^{6} - \frac{7}{52} a^{4} + \frac{21}{52} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{52} a^{13} - \frac{2}{13} a^{9} + \frac{3}{52} a^{7} - \frac{7}{52} a^{5} - \frac{1}{4} a^{3} - \frac{15}{52} a - \frac{1}{2}$, $\frac{1}{34617481745400173672} a^{14} - \frac{1}{104} a^{13} - \frac{84399377017674151}{34617481745400173672} a^{12} + \frac{2740073385961267631}{17308740872700086836} a^{10} - \frac{9}{52} a^{9} + \frac{711307950930831279}{34617481745400173672} a^{8} + \frac{23}{104} a^{7} - \frac{929940032071939621}{8654370436350043418} a^{6} - \frac{19}{104} a^{5} - \frac{224383169677858389}{4327185218175021709} a^{4} + \frac{3}{8} a^{3} + \frac{6143221066487193997}{17308740872700086836} a^{2} - \frac{37}{104} a + \frac{61879473910689437}{204837170091125288}$, $\frac{1}{450027262690202257736} a^{15} - \frac{1207211093402112151}{225013631345101128868} a^{13} - \frac{1}{104} a^{12} + \frac{4071514991553582003}{225013631345101128868} a^{11} + \frac{2}{13} a^{10} - \frac{101143974876881218179}{450027262690202257736} a^{9} - \frac{7}{52} a^{8} - \frac{68627538400913084119}{450027262690202257736} a^{7} - \frac{1}{8} a^{6} - \frac{219152907470368188341}{450027262690202257736} a^{5} + \frac{33}{104} a^{4} + \frac{49899667490957269003}{450027262690202257736} a^{3} + \frac{31}{104} a^{2} - \frac{519560157664554493}{1331441605592314372} a + \frac{3}{8}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13095545.3663 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.6.123414690307499.1, 8.4.1842010303097.2, 8.2.1617217123.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 67 | Data not computed | ||||||