Normalized defining polynomial
\( x^{16} + 29 x^{14} - 87 x^{13} - 4 x^{12} - 1606 x^{11} - 2796 x^{10} + 913 x^{9} - 29567 x^{8} + 76536 x^{7} - 184611 x^{6} + 264709 x^{5} + 953360 x^{4} - 1715142 x^{3} + 4376031 x^{2} - 1470532 x + 4535759 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(151177235919793595991777822557=11^{5}\cdot 97913143^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 97913143$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7434447369216434057396851357678394756735102956139369} a^{15} - \frac{2029520989044910451655670424729259589802050640486521}{7434447369216434057396851357678394756735102956139369} a^{14} - \frac{2856295251715576878401623546990484625714763266554939}{7434447369216434057396851357678394756735102956139369} a^{13} + \frac{490841518001979413326598550708952355679174095564173}{7434447369216434057396851357678394756735102956139369} a^{12} + \frac{1185323948950025953206017906018751670001530123417084}{7434447369216434057396851357678394756735102956139369} a^{11} + \frac{1545419834853793264937671702209057509532491921922206}{7434447369216434057396851357678394756735102956139369} a^{10} - \frac{2319695715450286091561821460876710285765380912445751}{7434447369216434057396851357678394756735102956139369} a^{9} + \frac{368498345958544320926799714736060606864910544538622}{7434447369216434057396851357678394756735102956139369} a^{8} + \frac{959085808683755533049492123788572419345666596979879}{7434447369216434057396851357678394756735102956139369} a^{7} + \frac{3257774403029359883352346340395870897551021626356442}{7434447369216434057396851357678394756735102956139369} a^{6} - \frac{1207041953887366117683903820037529608466334232434008}{7434447369216434057396851357678394756735102956139369} a^{5} - \frac{3115746353685246154619631278901612785534289207989987}{7434447369216434057396851357678394756735102956139369} a^{4} - \frac{1523609898683742931071533479034016234096006314702549}{7434447369216434057396851357678394756735102956139369} a^{3} - \frac{1808865813754081538580914272379938863925339634650066}{7434447369216434057396851357678394756735102956139369} a^{2} + \frac{743927775674098111444025927022877178694758326183177}{7434447369216434057396851357678394756735102956139369} a - \frac{3943756024088642536677901603793617561305035073677}{7434447369216434057396851357678394756735102956139369}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 181270326.659 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5160960 |
| The 100 conjugacy class representatives for t16n1946 are not computed |
| Character table for t16n1946 is not computed |
Intermediate fields
| 8.8.1077044573.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | $16$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | $16$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 97913143 | Data not computed | ||||||