Properties

Label 16.4.14915129273...0000.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{12}\cdot 5^{4}\cdot 17^{12}$
Root discriminant $21.05$
Ramified primes $2, 5, 17$
Class number $1$
Class group Trivial
Galois group 16T1385

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-13, 64, -30, 162, -72, 42, -45, -19, -21, 38, 5, -15, 6, 4, -1, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - x^14 + 4*x^13 + 6*x^12 - 15*x^11 + 5*x^10 + 38*x^9 - 21*x^8 - 19*x^7 - 45*x^6 + 42*x^5 - 72*x^4 + 162*x^3 - 30*x^2 + 64*x - 13)
 
gp: K = bnfinit(x^16 - 3*x^15 - x^14 + 4*x^13 + 6*x^12 - 15*x^11 + 5*x^10 + 38*x^9 - 21*x^8 - 19*x^7 - 45*x^6 + 42*x^5 - 72*x^4 + 162*x^3 - 30*x^2 + 64*x - 13, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} - x^{14} + 4 x^{13} + 6 x^{12} - 15 x^{11} + 5 x^{10} + 38 x^{9} - 21 x^{8} - 19 x^{7} - 45 x^{6} + 42 x^{5} - 72 x^{4} + 162 x^{3} - 30 x^{2} + 64 x - 13 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1491512927308188160000=2^{12}\cdot 5^{4}\cdot 17^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{3}{7} a^{11} + \frac{2}{7} a^{10} + \frac{3}{7} a^{9} + \frac{2}{7} a^{8} - \frac{3}{7} a^{7} + \frac{3}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{3}{7} a^{2} - \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{10} - \frac{2}{7} a^{8} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{119} a^{14} + \frac{8}{119} a^{13} - \frac{1}{17} a^{12} + \frac{25}{119} a^{11} + \frac{4}{119} a^{10} - \frac{9}{119} a^{9} - \frac{11}{119} a^{8} - \frac{19}{119} a^{7} - \frac{29}{119} a^{6} + \frac{54}{119} a^{5} - \frac{57}{119} a^{4} - \frac{3}{7} a^{3} - \frac{1}{119} a^{2} - \frac{2}{119} a + \frac{8}{119}$, $\frac{1}{638624626381} a^{15} + \frac{14277964}{638624626381} a^{14} - \frac{21954801322}{638624626381} a^{13} - \frac{38088161205}{638624626381} a^{12} - \frac{128588831787}{638624626381} a^{11} + \frac{31055313389}{638624626381} a^{10} - \frac{196785785795}{638624626381} a^{9} + \frac{8499792266}{91232089483} a^{8} - \frac{54675736468}{638624626381} a^{7} - \frac{16767535488}{37566154493} a^{6} + \frac{89530662026}{638624626381} a^{5} - \frac{309754000513}{638624626381} a^{4} + \frac{110698191949}{638624626381} a^{3} - \frac{344520732}{91232089483} a^{2} - \frac{139589435659}{638624626381} a - \frac{182633908120}{638624626381}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 27849.4309237 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1385:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 71 conjugacy class representatives for t16n1385 are not computed
Character table for t16n1385 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, 8.2.386201104.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.12.15$x^{8} + 2 x^{7} + 2 x^{4} + 12$$4$$2$$12$$C_2^2:C_4$$[2, 2]^{4}$
$5$5.8.0.1$x^{8} + x^{2} - 2 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
5.8.4.2$x^{8} + 25 x^{4} - 250 x^{2} + 1250$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
$17$17.4.3.1$x^{4} - 17$$4$$1$$3$$C_4$$[\ ]_{4}$
17.4.3.1$x^{4} - 17$$4$$1$$3$$C_4$$[\ ]_{4}$
17.8.6.1$x^{8} - 119 x^{4} + 23409$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$