Normalized defining polynomial
\( x^{16} - 7 x^{15} + 16 x^{14} - 21 x^{13} + 33 x^{12} + 11 x^{11} - 166 x^{10} + 388 x^{9} - 892 x^{8} + 1476 x^{7} - 1297 x^{6} + 1240 x^{5} - 2443 x^{4} + 2770 x^{3} - 1012 x^{2} - 352 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14815515721743759765625=5^{10}\cdot 79^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{62} a^{12} + \frac{7}{62} a^{11} - \frac{25}{62} a^{10} - \frac{1}{62} a^{9} + \frac{10}{31} a^{8} + \frac{17}{62} a^{7} + \frac{6}{31} a^{6} + \frac{15}{62} a^{5} + \frac{7}{62} a^{4} + \frac{14}{31} a^{3} + \frac{6}{31} a^{2} + \frac{9}{62} a - \frac{12}{31}$, $\frac{1}{62} a^{13} - \frac{6}{31} a^{11} - \frac{6}{31} a^{10} + \frac{27}{62} a^{9} + \frac{1}{62} a^{8} + \frac{17}{62} a^{7} - \frac{7}{62} a^{6} + \frac{13}{31} a^{5} - \frac{21}{62} a^{4} + \frac{1}{31} a^{3} - \frac{13}{62} a^{2} - \frac{25}{62} a - \frac{9}{31}$, $\frac{1}{3844} a^{14} - \frac{1}{124} a^{13} + \frac{1}{1922} a^{12} + \frac{365}{3844} a^{11} - \frac{633}{3844} a^{10} - \frac{75}{3844} a^{9} - \frac{487}{1922} a^{8} - \frac{55}{1922} a^{7} - \frac{463}{961} a^{6} + \frac{265}{1922} a^{5} + \frac{193}{3844} a^{4} - \frac{378}{961} a^{3} + \frac{949}{3844} a^{2} + \frac{430}{961} a + \frac{350}{961}$, $\frac{1}{114772731657376} a^{15} - \frac{13755358983}{114772731657376} a^{14} + \frac{167160469}{43212624871} a^{13} + \frac{497378829307}{114772731657376} a^{12} + \frac{1168215354101}{8828671665952} a^{11} - \frac{20163578072965}{114772731657376} a^{10} + \frac{25900448209405}{57386365828688} a^{9} + \frac{6058733154637}{28693182914344} a^{8} + \frac{2397517519521}{28693182914344} a^{7} + \frac{7712980809197}{28693182914344} a^{6} - \frac{29410014415681}{114772731657376} a^{5} + \frac{170873958439}{14346591457172} a^{4} + \frac{59000523405}{160971573152} a^{3} - \frac{24185111083775}{57386365828688} a^{2} - \frac{10537919325621}{28693182914344} a + \frac{532971142575}{3586647864293}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 156067.71042 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T339):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.1975.1, 8.4.121719003125.1, 8.2.308149375.1, 8.2.1540746875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $79$ | 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.8.6.1 | $x^{8} - 553 x^{4} + 505521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |