Properties

Label 16.4.14754410872...0000.2
Degree $16$
Signature $[4, 6]$
Discriminant $2^{16}\cdot 5^{11}\cdot 11^{5}\cdot 31^{5}$
Root discriminant $37.42$
Ramified primes $2, 5, 11, 31$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group 16T1782

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3184, 14992, -18480, 14776, -17552, 18476, -11486, 5754, -4195, 2288, -137, -554, 382, -154, 42, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 42*x^14 - 154*x^13 + 382*x^12 - 554*x^11 - 137*x^10 + 2288*x^9 - 4195*x^8 + 5754*x^7 - 11486*x^6 + 18476*x^5 - 17552*x^4 + 14776*x^3 - 18480*x^2 + 14992*x - 3184)
 
gp: K = bnfinit(x^16 - 8*x^15 + 42*x^14 - 154*x^13 + 382*x^12 - 554*x^11 - 137*x^10 + 2288*x^9 - 4195*x^8 + 5754*x^7 - 11486*x^6 + 18476*x^5 - 17552*x^4 + 14776*x^3 - 18480*x^2 + 14992*x - 3184, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 42 x^{14} - 154 x^{13} + 382 x^{12} - 554 x^{11} - 137 x^{10} + 2288 x^{9} - 4195 x^{8} + 5754 x^{7} - 11486 x^{6} + 18476 x^{5} - 17552 x^{4} + 14776 x^{3} - 18480 x^{2} + 14992 x - 3184 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14754410872643200000000000=2^{16}\cdot 5^{11}\cdot 11^{5}\cdot 31^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.42$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{12} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{2} a^{9} - \frac{3}{10} a^{8} - \frac{1}{10} a^{7} + \frac{7}{20} a^{6} - \frac{2}{5} a^{5} - \frac{9}{20} a^{4} + \frac{3}{10} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{20} a^{13} - \frac{1}{5} a^{10} - \frac{3}{10} a^{9} + \frac{1}{10} a^{8} - \frac{1}{4} a^{7} + \frac{1}{5} a^{6} + \frac{3}{20} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{3}{10} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{2200} a^{14} - \frac{4}{275} a^{13} - \frac{1}{50} a^{12} - \frac{37}{220} a^{11} - \frac{21}{100} a^{10} + \frac{457}{1100} a^{9} + \frac{27}{88} a^{8} - \frac{67}{550} a^{7} - \frac{13}{2200} a^{6} - \frac{21}{100} a^{5} + \frac{201}{550} a^{4} - \frac{9}{275} a^{3} + \frac{23}{110} a^{2} - \frac{97}{275} a - \frac{137}{275}$, $\frac{1}{11565909966176663840600} a^{15} + \frac{63774485201226797}{889685382013589526200} a^{14} + \frac{19560478396671808361}{1156590996617666384060} a^{13} - \frac{4211897015486873421}{222421345503397381550} a^{12} - \frac{34986575172613149424}{1445738745772082980075} a^{11} - \frac{645467918708831192213}{2891477491544165960150} a^{10} - \frac{1809593478615387308803}{11565909966176663840600} a^{9} + \frac{285838485504477225613}{608732103482982307400} a^{8} + \frac{1588590448368536570973}{11565909966176663840600} a^{7} - \frac{3673380754651453894661}{11565909966176663840600} a^{6} + \frac{667147106091974769796}{1445738745772082980075} a^{5} - \frac{474162839575153420987}{1156590996617666384060} a^{4} - \frac{179155194065960740832}{1445738745772082980075} a^{3} - \frac{655208630955567318662}{1445738745772082980075} a^{2} + \frac{39711004959916252152}{1445738745772082980075} a - \frac{624819327585150335416}{1445738745772082980075}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1528295.73077 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1782:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 130 conjugacy class representatives for t16n1782 are not computed
Character table for t16n1782 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.8525.1, 8.6.18604960000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.7$x^{8} + 2 x^{6} + 4 x^{5} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
2.8.8.7$x^{8} + 2 x^{6} + 4 x^{5} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.4.3.2$x^{4} - 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
31Data not computed