Properties

Label 16.4.14754410872...0000.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{16}\cdot 5^{11}\cdot 11^{5}\cdot 31^{5}$
Root discriminant $37.42$
Ramified primes $2, 5, 11, 31$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1782

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -20, 208, -1188, 3760, -7156, 8258, -4538, -73, 994, -198, -396, 27, 56, -7, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 7*x^14 + 56*x^13 + 27*x^12 - 396*x^11 - 198*x^10 + 994*x^9 - 73*x^8 - 4538*x^7 + 8258*x^6 - 7156*x^5 + 3760*x^4 - 1188*x^3 + 208*x^2 - 20*x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 - 7*x^14 + 56*x^13 + 27*x^12 - 396*x^11 - 198*x^10 + 994*x^9 - 73*x^8 - 4538*x^7 + 8258*x^6 - 7156*x^5 + 3760*x^4 - 1188*x^3 + 208*x^2 - 20*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 7 x^{14} + 56 x^{13} + 27 x^{12} - 396 x^{11} - 198 x^{10} + 994 x^{9} - 73 x^{8} - 4538 x^{7} + 8258 x^{6} - 7156 x^{5} + 3760 x^{4} - 1188 x^{3} + 208 x^{2} - 20 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14754410872643200000000000=2^{16}\cdot 5^{11}\cdot 11^{5}\cdot 31^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.42$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{174684719383749230468835} a^{15} - \frac{13226519538076520248273}{174684719383749230468835} a^{14} + \frac{7217354659026983504918}{34936943876749846093767} a^{13} + \frac{92997163590481661462}{5293476344962097892995} a^{12} + \frac{75337929984269168633378}{174684719383749230468835} a^{11} + \frac{4048758495697974186664}{58228239794583076822945} a^{10} + \frac{3093850150489575478444}{174684719383749230468835} a^{9} + \frac{16983794990232459970408}{174684719383749230468835} a^{8} + \frac{7318197310610623343318}{34936943876749846093767} a^{7} + \frac{7161101620730024054499}{58228239794583076822945} a^{6} + \frac{11371230417746334727619}{34936943876749846093767} a^{5} + \frac{53511818268732388746119}{174684719383749230468835} a^{4} - \frac{13561040918365856251562}{58228239794583076822945} a^{3} - \frac{77049960271365799719314}{174684719383749230468835} a^{2} + \frac{8236600939649345841619}{174684719383749230468835} a - \frac{8089975513466905671997}{58228239794583076822945}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2079471.59954 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1782:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 130 conjugacy class representatives for t16n1782 are not computed
Character table for t16n1782 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.8525.1, 8.6.93024800000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.10$x^{8} + 2 x^{6} + 8 x^{3} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
2.8.8.10$x^{8} + 2 x^{6} + 8 x^{3} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.7.1$x^{8} - 5$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.3.2$x^{4} - 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
31Data not computed