Normalized defining polynomial
\( x^{16} + 4 x^{14} - 5 x^{12} - 38 x^{10} + 10 x^{8} + 158 x^{6} - 121 x^{4} - 340 x^{2} + 17 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(147196673813186890170368=2^{32}\cdot 17^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{26} a^{12} - \frac{9}{26} a^{10} - \frac{1}{2} a^{8} + \frac{4}{13} a^{6} - \frac{3}{26} a^{4} + \frac{3}{26} a^{2} + \frac{7}{26}$, $\frac{1}{26} a^{13} - \frac{9}{26} a^{11} - \frac{1}{2} a^{9} + \frac{4}{13} a^{7} - \frac{3}{26} a^{5} + \frac{3}{26} a^{3} + \frac{7}{26} a$, $\frac{1}{12980084} a^{14} - \frac{1}{52} a^{13} - \frac{1044}{249617} a^{12} + \frac{9}{52} a^{11} + \frac{1336171}{6490042} a^{10} + \frac{1}{4} a^{9} + \frac{1841263}{12980084} a^{8} - \frac{2}{13} a^{7} - \frac{2978881}{12980084} a^{6} - \frac{23}{52} a^{5} - \frac{720381}{6490042} a^{4} - \frac{3}{52} a^{3} + \frac{27193}{69043} a^{2} + \frac{19}{52} a + \frac{2254861}{12980084}$, $\frac{1}{12980084} a^{15} + \frac{195329}{12980084} a^{13} - \frac{1}{52} a^{12} + \frac{32753}{998468} a^{11} + \frac{9}{52} a^{10} - \frac{701879}{6490042} a^{9} + \frac{1}{4} a^{8} - \frac{981945}{12980084} a^{7} - \frac{2}{13} a^{6} + \frac{4300429}{12980084} a^{5} - \frac{23}{52} a^{4} + \frac{124705}{276172} a^{3} - \frac{3}{52} a^{2} - \frac{95687}{499234} a + \frac{19}{52}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 438240.69465 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 49 conjugacy class representatives for t16n1113 |
| Character table for t16n1113 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.1156.1, 8.4.1453933568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.20.100 | $x^{8} + 4 x^{7} + 8 x^{2} + 56$ | $8$ | $1$ | $20$ | $C_4\wr C_2$ | $[2, 2, 3, 7/2]^{2}$ |
| 2.8.12.19 | $x^{8} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| $17$ | 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |