Normalized defining polynomial
\( x^{16} - 6 x^{15} + 3 x^{14} + 33 x^{13} - 179 x^{11} - 42 x^{10} + 619 x^{9} + 160 x^{8} - 1393 x^{7} - 12 x^{6} + 1601 x^{5} - 519 x^{4} - 320 x^{3} + 540 x^{2} - 530 x + 55 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(146833965391572509765625=3^{4}\cdot 5^{12}\cdot 41^{4}\cdot 1621^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 41, 1621$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{29} a^{12} - \frac{13}{29} a^{11} + \frac{1}{29} a^{10} - \frac{1}{29} a^{9} + \frac{10}{29} a^{8} - \frac{4}{29} a^{7} + \frac{9}{29} a^{6} - \frac{13}{29} a^{5} - \frac{9}{29} a^{4} + \frac{8}{29} a^{3} - \frac{7}{29} a^{2} - \frac{9}{29} a - \frac{12}{29}$, $\frac{1}{29} a^{13} + \frac{6}{29} a^{11} + \frac{12}{29} a^{10} - \frac{3}{29} a^{9} + \frac{10}{29} a^{8} - \frac{14}{29} a^{7} - \frac{12}{29} a^{6} - \frac{4}{29} a^{5} + \frac{7}{29} a^{4} + \frac{10}{29} a^{3} - \frac{13}{29} a^{2} - \frac{13}{29} a - \frac{11}{29}$, $\frac{1}{2523} a^{14} + \frac{5}{2523} a^{13} + \frac{14}{2523} a^{12} - \frac{11}{841} a^{11} - \frac{979}{2523} a^{10} + \frac{596}{2523} a^{9} - \frac{10}{29} a^{8} + \frac{49}{841} a^{7} - \frac{311}{2523} a^{6} - \frac{1190}{2523} a^{5} + \frac{194}{841} a^{4} - \frac{63}{841} a^{3} - \frac{151}{841} a^{2} + \frac{490}{2523} a + \frac{632}{2523}$, $\frac{1}{1423262136424323} a^{15} - \frac{148657401637}{1423262136424323} a^{14} + \frac{13866294583682}{1423262136424323} a^{13} - \frac{1413780850327}{474420712141441} a^{12} + \frac{572213483911271}{1423262136424323} a^{11} - \frac{99899936329501}{1423262136424323} a^{10} + \frac{268348255496}{861017626391} a^{9} + \frac{181450165626411}{474420712141441} a^{8} - \frac{152304311227223}{1423262136424323} a^{7} - \frac{44310119743046}{109481702801871} a^{6} + \frac{76639536946735}{474420712141441} a^{5} + \frac{5363003564682}{474420712141441} a^{4} - \frac{98311162486118}{474420712141441} a^{3} - \frac{410618139448871}{1423262136424323} a^{2} - \frac{162093150684022}{1423262136424323} a - \frac{2161308907158}{16359334901429}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 398441.698819 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1559 are not computed |
| Character table for t16n1559 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.5125.1, 8.4.42576578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.4.1 | $x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 1621 | Data not computed | ||||||