Normalized defining polynomial
\( x^{16} - 2 x^{15} - 23 x^{14} + 83 x^{13} - 224 x^{12} + 705 x^{11} - 867 x^{10} - 1031 x^{9} + 4119 x^{8} - 11312 x^{7} + 30835 x^{6} - 50087 x^{5} + 53816 x^{4} - 88249 x^{3} + 60104 x^{2} - 46032 x + 21217 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1411114225648575427835680561=11^{8}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{3}{7} a^{11} + \frac{1}{7} a^{10} - \frac{1}{7} a^{9} - \frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{7} a^{13} - \frac{1}{7} a^{11} + \frac{3}{7} a^{10} + \frac{2}{7} a^{9} - \frac{3}{7} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{7} a^{14} - \frac{1}{7} a^{11} + \frac{3}{7} a^{10} + \frac{3}{7} a^{9} - \frac{3}{7} a^{8} - \frac{1}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{3}{7} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{207022302892968681265663346572032529} a^{15} + \frac{3771018949034947697219760715571982}{207022302892968681265663346572032529} a^{14} - \frac{8370033844853877827394063815910068}{207022302892968681265663346572032529} a^{13} + \frac{967899312036420326858274367889517}{29574614698995525895094763796004647} a^{12} + \frac{13682824470312332859551439213767839}{29574614698995525895094763796004647} a^{11} + \frac{73246894818387448582300548961262338}{207022302892968681265663346572032529} a^{10} + \frac{31968887967934725064916958440486592}{207022302892968681265663346572032529} a^{9} + \frac{86227410350427693093268531806521573}{207022302892968681265663346572032529} a^{8} - \frac{6472330286431587092673431709739649}{207022302892968681265663346572032529} a^{7} - \frac{49843179413763870757320458285553282}{207022302892968681265663346572032529} a^{6} - \frac{101103799125790751787960478563439517}{207022302892968681265663346572032529} a^{5} - \frac{85626167341987603748543540248666019}{207022302892968681265663346572032529} a^{4} + \frac{67665072694605107252540712565052635}{207022302892968681265663346572032529} a^{3} - \frac{9501615419420958906954517561889555}{29574614698995525895094763796004647} a^{2} + \frac{55783701385449415816054755639182224}{207022302892968681265663346572032529} a - \frac{7162739496874916054836189073240176}{29574614698995525895094763796004647}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16768421.8387 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.4.6129013.1, 4.2.15059.1, 4.2.557183.1, 8.2.3414981850379.1, 8.2.2494508291.1, 8.4.37564800354169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $37$ | 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |