Normalized defining polynomial
\( x^{16} - 19 x^{14} - 18 x^{13} + 111 x^{12} - 18 x^{11} - 892 x^{10} + 243 x^{9} + 4030 x^{8} - 1287 x^{7} - 18375 x^{6} - 18261 x^{5} + 13008 x^{4} + 22626 x^{3} - 15192 x^{2} - 27567 x - 3285 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1410629873249683485564270561=3^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{21} a^{12} + \frac{2}{7} a^{11} + \frac{8}{21} a^{10} - \frac{2}{7} a^{9} - \frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{2}{21} a^{6} - \frac{1}{7} a^{5} + \frac{1}{21} a^{4} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{21} a^{13} - \frac{1}{3} a^{11} + \frac{3}{7} a^{10} - \frac{3}{7} a^{9} + \frac{5}{21} a^{7} + \frac{2}{7} a^{6} - \frac{2}{21} a^{5} + \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} + \frac{2}{7}$, $\frac{1}{1533} a^{14} - \frac{5}{219} a^{13} + \frac{8}{511} a^{12} - \frac{295}{1533} a^{11} - \frac{412}{1533} a^{10} - \frac{125}{511} a^{9} - \frac{760}{1533} a^{8} - \frac{538}{1533} a^{7} - \frac{197}{511} a^{6} - \frac{74}{219} a^{5} - \frac{512}{1533} a^{4} + \frac{65}{511} a^{3} - \frac{173}{511} a^{2} - \frac{88}{511} a + \frac{2}{7}$, $\frac{1}{132954691237467242699087238105} a^{15} + \frac{2314635096210173146864723}{14772743470829693633231915345} a^{14} - \frac{125499039243864765468211445}{26590938247493448539817447621} a^{13} + \frac{711921129802160394447633949}{44318230412489080899695746035} a^{12} + \frac{3670470962483636931740958617}{8863646082497816179939149207} a^{11} - \frac{17520406347900518798236748341}{44318230412489080899695746035} a^{10} - \frac{545742356707449922819349668}{132954691237467242699087238105} a^{9} - \frac{965393558794165821604144367}{14772743470829693633231915345} a^{8} + \frac{16306847573942010086753977984}{132954691237467242699087238105} a^{7} + \frac{8156710420269748271174508977}{44318230412489080899695746035} a^{6} + \frac{6949810278554563711134808444}{44318230412489080899695746035} a^{5} - \frac{14287172666302394581075330844}{44318230412489080899695746035} a^{4} - \frac{7779873180973412722073079352}{44318230412489080899695746035} a^{3} - \frac{215069778557313735989340082}{2110391924404241947604559335} a^{2} + \frac{7269950290657157852483705779}{14772743470829693633231915345} a + \frac{19365350689898762339336428}{40473269783095051049950453}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50227843.565 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.4.2042829.1, 4.2.11163.1, 4.2.680943.1, 8.4.4173150323241.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |