Properties

Label 16.4.13735096585...9809.7
Degree $16$
Signature $[4, 6]$
Discriminant $13^{8}\cdot 17^{14}$
Root discriminant $43.01$
Ramified primes $13, 17$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group $C_2\wr C_4$ (as 16T157)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2209, -8131, 7743, 1815, -6922, -2993, -1680, 3943, 3173, -380, -657, -488, 73, -11, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 4*x^14 - 11*x^13 + 73*x^12 - 488*x^11 - 657*x^10 - 380*x^9 + 3173*x^8 + 3943*x^7 - 1680*x^6 - 2993*x^5 - 6922*x^4 + 1815*x^3 + 7743*x^2 - 8131*x + 2209)
 
gp: K = bnfinit(x^16 - 2*x^15 - 4*x^14 - 11*x^13 + 73*x^12 - 488*x^11 - 657*x^10 - 380*x^9 + 3173*x^8 + 3943*x^7 - 1680*x^6 - 2993*x^5 - 6922*x^4 + 1815*x^3 + 7743*x^2 - 8131*x + 2209, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 4 x^{14} - 11 x^{13} + 73 x^{12} - 488 x^{11} - 657 x^{10} - 380 x^{9} + 3173 x^{8} + 3943 x^{7} - 1680 x^{6} - 2993 x^{5} - 6922 x^{4} + 1815 x^{3} + 7743 x^{2} - 8131 x + 2209 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(137350965859713069141239809=13^{8}\cdot 17^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $43.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{4563946113427659648574856797582402} a^{15} + \frac{140054507968084045565203655053499}{4563946113427659648574856797582402} a^{14} + \frac{891117132637410526215694887878979}{4563946113427659648574856797582402} a^{13} - \frac{155418012685671274822797313482657}{4563946113427659648574856797582402} a^{12} + \frac{903703855192933298220449232701929}{4563946113427659648574856797582402} a^{11} - \frac{831648375890462519169414555323663}{4563946113427659648574856797582402} a^{10} - \frac{1981131416021274231519649016230809}{4563946113427659648574856797582402} a^{9} + \frac{865794288260342570579369810520775}{4563946113427659648574856797582402} a^{8} + \frac{796863124807272588817460829091365}{4563946113427659648574856797582402} a^{7} + \frac{1929857690488868826910604988124633}{4563946113427659648574856797582402} a^{6} + \frac{773630271477733774047944050203345}{4563946113427659648574856797582402} a^{5} + \frac{2149239351221360638620587485718399}{4563946113427659648574856797582402} a^{4} + \frac{1267038299591150547841059962174905}{4563946113427659648574856797582402} a^{3} + \frac{350001954362772331640502489482277}{4563946113427659648574856797582402} a^{2} - \frac{79445913755082261145121906745165}{4563946113427659648574856797582402} a - \frac{18386832050976773690144316714995}{48552618227953826048668689335983}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1497418.14222 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_4$ (as 16T157):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 13 conjugacy class representatives for $C_2\wr C_4$
Character table for $C_2\wr C_4$

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, 8.4.901514064581.1 x2, 8.4.4079249161.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$17$17.8.7.1$x^{8} - 1377$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.1$x^{8} - 1377$$8$$1$$7$$C_8$$[\ ]_{8}$