Normalized defining polynomial
\( x^{16} - 14 x^{13} - 63 x^{12} + 38 x^{11} + 193 x^{10} + 800 x^{9} + 535 x^{8} - 1926 x^{7} - 3970 x^{6} - 2708 x^{5} - 730 x^{4} + 10848 x^{3} - 6321 x^{2} - 958 x + 1751 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13588112604256141991477248=2^{24}\cdot 73^{3}\cdot 113^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 73, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{34260577536987169267135375381348} a^{15} - \frac{1417465668280354480422948691191}{34260577536987169267135375381348} a^{14} + \frac{8123114415932880789304974725411}{34260577536987169267135375381348} a^{13} + \frac{17053989924953458839656653741441}{34260577536987169267135375381348} a^{12} - \frac{2407789868406361067141701402803}{8565144384246792316783843845337} a^{11} - \frac{7745186484282534265572294987521}{17130288768493584633567687690674} a^{10} - \frac{15574617264113501251575228934277}{34260577536987169267135375381348} a^{9} - \frac{5253216636742118125691535112765}{34260577536987169267135375381348} a^{8} - \frac{537189021067507342025697029245}{8565144384246792316783843845337} a^{7} - \frac{7521030179467010370116072070721}{17130288768493584633567687690674} a^{6} - \frac{3463797420464095763766579878643}{8565144384246792316783843845337} a^{5} - \frac{2227022913630479317541431247817}{8565144384246792316783843845337} a^{4} - \frac{1088502531558233211725062840433}{17130288768493584633567687690674} a^{3} + \frac{1848842771532675577243488680957}{17130288768493584633567687690674} a^{2} + \frac{7951287530333041389268705017581}{34260577536987169267135375381348} a + \frac{706532401811768826480459035055}{34260577536987169267135375381348}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3223628.31608 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 73 conjugacy class representatives for t16n1638 are not computed |
| Character table for t16n1638 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7232.1, 8.8.5910106112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 73 | Data not computed | ||||||
| $113$ | 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.8.4.1 | $x^{8} + 127690 x^{4} - 1442897 x^{2} + 4076184025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |