Normalized defining polynomial
\( x^{16} + 96 x^{14} + 2020 x^{12} - 70560 x^{10} - 3717076 x^{8} - 57999200 x^{6} - 346080720 x^{4} - 446748576 x^{2} + 829547912 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1278076597085555502017391343173632=2^{67}\cdot 17^{6}\cdot 599^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $117.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 599$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{34} a^{10} + \frac{5}{34} a^{8} - \frac{4}{17} a^{6} + \frac{5}{17} a^{4} - \frac{7}{17} a^{2}$, $\frac{1}{68} a^{11} - \frac{3}{17} a^{9} - \frac{2}{17} a^{7} - \frac{6}{17} a^{5} + \frac{5}{17} a^{3}$, $\frac{1}{68} a^{12} - \frac{4}{17} a^{8} + \frac{4}{17} a^{6} + \frac{1}{17} a^{4} - \frac{8}{17} a^{2}$, $\frac{1}{68} a^{13} - \frac{4}{17} a^{9} + \frac{4}{17} a^{7} + \frac{1}{17} a^{5} - \frac{8}{17} a^{3}$, $\frac{1}{16096434166617251908132699396} a^{14} - \frac{14202918200217842238156162}{4024108541654312977033174849} a^{12} - \frac{105022778406238953857260231}{8048217083308625954066349698} a^{10} + \frac{1111851328351910721756882465}{8048217083308625954066349698} a^{8} + \frac{4067786384239483045454799}{4024108541654312977033174849} a^{6} + \frac{1637609571712668812823394356}{4024108541654312977033174849} a^{4} - \frac{782501686178909252629055419}{4024108541654312977033174849} a^{2} - \frac{98123733573169000330338}{395179077055318960722103}$, $\frac{1}{16096434166617251908132699396} a^{15} - \frac{14202918200217842238156162}{4024108541654312977033174849} a^{13} + \frac{26666710343658149758019235}{16096434166617251908132699396} a^{11} - \frac{308422274584905623078355717}{8048217083308625954066349698} a^{9} - \frac{469356747928032631899624595}{4024108541654312977033174849} a^{7} + \frac{217335968775852467988156174}{4024108541654312977033174849} a^{5} + \frac{401059649601771034733643066}{4024108541654312977033174849} a^{3} - \frac{98123733573169000330338}{395179077055318960722103} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11780892895.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 49 conjugacy class representatives for t16n1113 |
| Character table for t16n1113 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.4352.1, 8.8.9697230848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 599 | Data not computed | ||||||