Normalized defining polynomial
\( x^{16} - 6 x^{15} + 104 x^{14} - 510 x^{13} - 611 x^{12} - 7359 x^{11} - 242491 x^{10} + 222254 x^{9} - 4451483 x^{8} + 15418771 x^{7} - 50674969 x^{6} + 19815774 x^{5} - 8721981 x^{4} + 576210513 x^{3} - 2009102852 x^{2} + 1790386599 x - 209580401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1274602568003244304847660149105336749401=31^{10}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $278.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{113} a^{14} - \frac{38}{113} a^{13} - \frac{54}{113} a^{12} - \frac{19}{113} a^{11} - \frac{48}{113} a^{10} + \frac{56}{113} a^{9} - \frac{17}{113} a^{8} - \frac{29}{113} a^{7} + \frac{30}{113} a^{6} + \frac{48}{113} a^{5} - \frac{48}{113} a^{4} - \frac{25}{113} a^{3} + \frac{6}{113} a^{2} + \frac{41}{113} a + \frac{20}{113}$, $\frac{1}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{15} + \frac{151632115242083645257500729659053759151610032828592156316223332101902}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{14} + \frac{28250486961778640551919676723627836185196602708984710067627836061557866}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{13} - \frac{5428975095683617012879858709895990070940367945597158798361976555888570}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{12} - \frac{1040427366759551103443126515559727241028935410602756189943156454420919}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{11} + \frac{22896720114357012338645733476580184847376382936815523379140784656916146}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{10} - \frac{28963875041057053526338899694151851561754735419209164964163101165559879}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{9} - \frac{20760670518980220224887443066097296572433394922857490155841631892503749}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{8} - \frac{18005228920398883148582122861754597641372769482465592871789545603312117}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{7} + \frac{13223684560497657964910688278132425391151895667959594592247288698264722}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{6} - \frac{1636785755308698834262738125789419272530259346215806125375043292712787}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{5} + \frac{10295831454816783187617626050340964045315614850921757679901242376843060}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{4} + \frac{9262198256047684426444553792135529324489514182450996168133180832487720}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{3} - \frac{17658420250180380547657298843391477632805018775409252362289268371614759}{65543073171630189692797011580191697451255262009726427350226270579975879} a^{2} + \frac{4377492201946378995149669363834429322506594769611031392532349265023156}{65543073171630189692797011580191697451255262009726427350226270579975879} a - \frac{6149596700804350517290064086888441820228908690479060247930195575600535}{65543073171630189692797011580191697451255262009726427350226270579975879}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1563337889260 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||