Normalized defining polynomial
\( x^{16} - x^{15} - 15 x^{14} + 78 x^{13} - 174 x^{12} + 26 x^{11} + 94 x^{10} - 15 x^{9} - 636 x^{8} + 220 x^{7} - 134 x^{6} - 113 x^{5} + 206 x^{4} + 609 x^{3} + 360 x^{2} + 108 x + 81 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(124784363598789404541015625=5^{12}\cdot 59^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{2}{9} a^{9} - \frac{1}{9} a^{8} - \frac{2}{9} a^{7} + \frac{2}{9} a^{6} + \frac{2}{9} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{2}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{4}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{2}{9} a^{7} + \frac{1}{3} a^{6} + \frac{2}{9} a^{5} + \frac{4}{9} a^{4} - \frac{4}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{64961333529125245916337} a^{15} - \frac{1757440933045249155949}{64961333529125245916337} a^{14} + \frac{195154858794280735196}{7217925947680582879593} a^{13} - \frac{828245363174166651442}{21653777843041748638779} a^{12} + \frac{154508028520943195155}{2405975315893527626531} a^{11} + \frac{1850507592543263783795}{64961333529125245916337} a^{10} + \frac{6614091898973809102612}{64961333529125245916337} a^{9} + \frac{2131457975907048401531}{21653777843041748638779} a^{8} - \frac{2092575580041123085196}{7217925947680582879593} a^{7} + \frac{27391851225495242779243}{64961333529125245916337} a^{6} - \frac{1833066595839376864046}{64961333529125245916337} a^{5} + \frac{13095918151050960616234}{64961333529125245916337} a^{4} - \frac{4642583975449376483281}{64961333529125245916337} a^{3} - \frac{3193597001828325116353}{7217925947680582879593} a^{2} - \frac{2671767490490991775078}{7217925947680582879593} a - \frac{997092451809658767467}{2405975315893527626531}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3723658.84124 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T330):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.1475.1, 8.4.37866753125.1, 8.2.3209046875.2, 8.2.2234138434375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.4.3.1 | $x^{4} + 177$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.3.1 | $x^{4} + 177$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |