Normalized defining polynomial
\( x^{16} - 2 x^{15} + 114 x^{14} - 492 x^{13} + 5241 x^{12} - 30478 x^{11} + 148761 x^{10} - 681392 x^{9} + 2453121 x^{8} - 7739418 x^{7} + 12450541 x^{6} - 8400012 x^{5} - 120605220 x^{4} + 169262104 x^{3} + 661786947 x^{2} + 413443500 x - 11447600 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12400595700703321333205791744050409=41^{14}\cdot 83^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} + \frac{1}{8} a^{2}$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{11} - \frac{1}{32} a^{10} - \frac{3}{32} a^{8} + \frac{1}{16} a^{7} - \frac{3}{32} a^{6} - \frac{1}{32} a^{4} - \frac{1}{16} a^{3} - \frac{15}{32} a^{2} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} + \frac{1}{32} a^{9} - \frac{3}{32} a^{7} - \frac{1}{16} a^{6} - \frac{1}{32} a^{5} - \frac{3}{32} a^{3} - \frac{1}{16} a^{2}$, $\frac{1}{73310912} a^{14} + \frac{1102541}{73310912} a^{13} + \frac{111667}{18327728} a^{12} - \frac{587317}{73310912} a^{11} - \frac{2177527}{36655456} a^{10} - \frac{4257059}{73310912} a^{9} + \frac{4157537}{36655456} a^{8} - \frac{5004207}{73310912} a^{7} - \frac{3766841}{36655456} a^{6} - \frac{13449393}{73310912} a^{5} + \frac{1490171}{9163864} a^{4} + \frac{5772829}{73310912} a^{3} + \frac{22963015}{73310912} a^{2} - \frac{9068793}{18327728} a + \frac{611589}{4581932}$, $\frac{1}{78089845245309757978860125244661260077180138256205760} a^{15} + \frac{354386979057984049254948902026568554601284133}{78089845245309757978860125244661260077180138256205760} a^{14} - \frac{2692221645153586964653457486229813632599446564863}{2440307663915929936839378913895664377411879320506430} a^{13} + \frac{376317551482648624392763820678929974919739512190603}{78089845245309757978860125244661260077180138256205760} a^{12} + \frac{1557031931601538080599153886959700090524423811390923}{39044922622654878989430062622330630038590069128102880} a^{11} + \frac{1394794690320907802145232073570923017166921750426077}{78089845245309757978860125244661260077180138256205760} a^{10} - \frac{1844671465169152500070589812758231885517749627375397}{39044922622654878989430062622330630038590069128102880} a^{9} - \frac{8074080039265883134329888894074683784016846634715647}{78089845245309757978860125244661260077180138256205760} a^{8} - \frac{1205561730345490312572705592468489637549146716796187}{39044922622654878989430062622330630038590069128102880} a^{7} - \frac{774771424991801597433021825218195286267483408030913}{78089845245309757978860125244661260077180138256205760} a^{6} - \frac{1793810211582588953290739760596303914410560343294071}{19522461311327439494715031311165315019295034564051440} a^{5} + \frac{41785421637449979155131044005642704981042751030409}{2110536357981344810239462844450304326410274006924480} a^{4} + \frac{3287459724190504132178610564294122288080381554661191}{15617969049061951595772025048932252015436027651241152} a^{3} + \frac{3821685661409194968085347710883152057946543844698881}{19522461311327439494715031311165315019295034564051440} a^{2} + \frac{875242102712045024185221220087544202989374080155477}{4880615327831859873678757827791328754823758641012860} a + \frac{9753492908533477590858199644011095241737794702546}{244030766391592993683937891389566437741187932050643}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 231953121767 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.2.139523.2, 4.4.68921.1, 4.2.5720443.1, 8.4.1341662192766209.1 x2, 8.4.32723468116249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |